11th International ITG Conference on Systems, Communications and Coding February 6, 2017

Knowledge for Tomorrow

Channel Codes for Short Blocks: A Survey

Gianluigi Liva, gianluigi.liva@dlr.de Fabian Steiner, fabian.steiner@tum.de

Outline

- Preliminaries
- Efficient Short Classical Codes
- Efficient Short Modern Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

Page 1/134 G. Liva and F. Steiner · Codes for Short Blocks ·

Transmission of small amounts of information¹

- Wireless sensor networks
- Machine-type communications and IoT
- Ultra-reliable low-latency communications

¹G. Durisi, T. Koch, and P. Popovski, "Towards Massive, Ultra-Reliable, and Low-Latency Wireless: The Art of Sending Short Packets," ArXiv, 2015

Transmission of small amounts of information¹

- Wireless sensor networks
- Machine-type communications and IoT
- Ultra-reliable low-latency communications
- Small data

¹G. Durisi, T. Koch, and P. Popovski, "Towards Massive, Ultra-Reliable, and Low-Latency Wireless: The Art of Sending Short Packets," ArXiv, 2015

Transmission of small amounts of information¹

- Wireless sensor networks
- Machine-type communications and IoT
- Ultra-reliable low-latency communications
- Small data

Approaching capacity (with large block lengths): Problem practically solved, e.g., with iterative codes

 $^{^1 \}rm G.$ Durisi, T. Koch, and P. Popovski, "Towards Massive, Ultra-Reliable, and Low-Latency Wireless: The Art of Sending Short Packets," ArXiv, 2015

Transmission of small amounts of information¹

- Wireless sensor networks
- Machine-type communications and IoT
- Ultra-reliable low-latency communications
- Small data

Approaching capacity (with large block lengths): Problem practically solved, e.g., with iterative codes

At medium-short block lengths, iterative codes yield performance losses when compared to *classical* linear block codes, when the later are decoded with (near) maximum-likelihood algorithms

 $^{^1 \}rm G.$ Durisi, T. Koch, and P. Popovski, "Towards Massive, Ultra-Reliable, and Low-Latency Wireless: The Art of Sending Short Packets," ArXiv, 2015

Transmission of small amounts of information¹

- Wireless sensor networks
- Machine-type communications and IoT
- Ultra-reliable low-latency communications
- Small data

Approaching capacity (with large block lengths): Problem practically solved, e.g., with iterative codes

At medium-short block lengths, iterative codes yield performance losses when compared to *classical* linear block codes, when the later are decoded with (near) maximum-likelihood algorithms

Performance vs. Complexity

 $^{^1 \}rm G.$ Durisi, T. Koch, and P. Popovski, "Towards Massive, Ultra-Reliable, and Low-Latency Wireless: The Art of Sending Short Packets," ArXiv, 2015

Latency vs. Blocklength

Low latency \neq Short blocks

Latency is more difficult to define²³⁴

- Encoding latency
- Transmission latency
- Decoding latency
- . . .

⁴C. Rachinger, J. B. Huber, and R. R. Müller, "Comparison of convolutional and block codes for low structural delay," *IEEE Trans. Commun.*, 2015

²T. Hehn and J.B.Huber, "LDPC codes and convolutional codes with equal structural delay: a comparison," IEEE Trans. Commun., 2009

³S. V. Maiya, D. J. Costello, and T. E. Fuja, "Low latency coding: Convolutional codes vs. ldpc codes," IEEE Trans. Commun., 2012

Latency vs. Blocklength

Low latency \neq Short blocks

Latency is more difficult to define²³⁴

- Encoding latency
- Transmission latency
- Decoding latency

• . . .

⁴C. Rachinger, J. B. Huber, and R. R. Müller, "Comparison of convolutional and block codes for low structural delay," *IEEE Trans. Commun.*, 2015

²T. Hehn and J.B.Huber, "LDPC codes and convolutional codes with equal structural delay: a comparison," IEEE Trans. Commun., 2009

³S. V. Maiya, D. J. Costello, and T. E. Fuja, "Low latency coding: Convolutional codes vs. ldpc codes," IEEE Trans. Commun., 2012

Latency vs. Blocklength Decoding Latency

Latency vs. Blocklength Decoding Latency

Latency vs. Blocklength Decoding Latency

Example: Viterbi with back-tracking decouples block length and decoding latency

We will consider

Block length rather than latency

- Block length rather than latency
 - Short blocks are not only required for low latency

- Block length rather than latency
 - · Short blocks are not only required for low latency
 - Wireless sensor networks, machine-type communications, etc.: The data units can be inherently small

- Block length rather than latency
 - Short blocks are not only required for low latency
 - Wireless sensor networks, machine-type communications, etc.: The data units can be inherently small
- The binary-input additive white Gaussian noise (AWGN) channel

- Block length rather than latency
 - Short blocks are not only required for low latency
 - Wireless sensor networks, machine-type communications, etc.: The data units can be inherently small
- The binary-input additive white Gaussian noise (AWGN) channel
- At some point, channel uncertainty

We will consider

- Block length rather than latency
 - Short blocks are not only required for low latency
 - Wireless sensor networks, machine-type communications, etc.: The data units can be inherently small
- The binary-input additive white Gaussian noise (AWGN) channel
- At some point, channel uncertainty

We will not consider

- Fading
- Feedback
- Synchronization
- High-order modulations (with an exception...)

Outline

Preliminaries

- Efficient Short Classical Codes
- Efficient Short Modern Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

Input alphabet $\mathcal{X} = \{\pm 1\}$

Output alphabet $\mathcal{Y}\equiv\mathbb{R}$

$$p(y|x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(y-x)^2\right]$$

$$\frac{E_b}{N_0} = \frac{1}{2R\sigma^2}$$

$$C = 1 - \mathbb{E}\left[\log_2\left(1 + \exp\left(-\frac{2}{\sigma^2}XY\right)\right)\right] \qquad [\mathsf{bpcu}]$$

Binary Linear Block Codes

- (n,k) binary linear block code C: Defined by $k \times n$ generator matrix G
- \blacksquare Alternatively, it may be defined through its $(n-k)\times n$ parity-check matrix ${\bf H}$

$$\mathbf{c}\mathbf{H}^T = \mathbf{0}$$

where $\mathbf{0}$ is the n-k-elements all-zero vector

The parity-check matrix rows span the subspace orthogonal to C. We denote such subspace as C[⊥]

$$\mathbf{c} \perp \mathbf{v} \qquad \forall \mathbf{c} \in \mathcal{C}, \mathbf{v} \in \mathcal{C}^{\perp}.$$

• The vectors in \mathcal{C}^{\perp} form a linear block code of dimension n-k, referred to as dual code of \mathcal{C}

Finite-Length Benchmarks

Denote by \mathcal{C}^{\star} the best (n,k) binary code

Finite-Length Benchmarks

Denote by \mathcal{C}^{\star} the best (n,k) binary code

We are interested in

 $P_B(\mathcal{C}^*)$

Gallager's Random Coding Bound⁵

Upper bound on $P_B(\mathcal{C}^{\star})$

$$P_B(\mathcal{C}^*) \leq \mathbb{E}\left[P_B(\mathcal{C})\right] \leq P_U(n,k)$$

where

$$P_U(n,k) = 2^{-nE_G(R)}$$

with

$$E_G(R) = \max_{0 \le \rho \le 1} \left[E_0(\rho) - \rho R \right]$$

and

$$E_0(\rho) = -\log_2 \mathbb{E}\left[\left(\frac{\mathbb{E}\left[p(Y|\tilde{X})^{\frac{1}{1+\rho}}|Y\right]}{p(Y|X)^{\frac{1}{1+\rho}}}\right)^{\rho}\right]$$

⁵R. Gallager, Information theory and reliable communication. Wiley, 1968

Sphere Packing Bound⁶

 $P_B(\mathcal{C}^*) \ge P_L(n,k)$

where

 $P_L(n,k)$

is a lower bound on the error probability of n-dimensional spherical codes with 2^k codewords (cone packing)

⁶C. Shannon, "Probability of error for optimal codes in a Gaussian channel," Bell Sys. Tech. J., 1959

Normal Approximation⁷⁸

Approximation of $P_B(\mathcal{C}^*)$

$$P_B(\mathcal{C}^*) \approx Q\left(\frac{n(C-R) + \frac{1}{2}\log_2 n}{\sqrt{nV}}\right)$$

where with $X \sim$ uniform

$$\begin{split} C = & \mathbb{E}\left[\log_2 \frac{p(Y|X)}{p(Y)}\right] & \text{(channel capacity)} \\ V = & \mathsf{Var}\left[\log_2 \frac{p(Y|X)}{p(Y)}\right] & \text{(channel dispersion)} \end{split}$$

⁸Y. Polyanskiy, V. Poor, and S. Verdú, "Channel coding rate in the finite blocklength regime," IEEE Trans. Inf. Theory, 2010

⁷V. Strassen, "Asymptotische Abschätzungen in Shannon's Informationstheorie," Publ. Czech. Academy of Sciences, 1962

k, bits

 E_b/N_0 , dB

Spectre: short packet communication toolbox

https://sites.google.com/site/durisi/software

Efficient Short Channel Codes

Classical

- Algebraic codes (BCH, Reed-Solomon, etc.)
- (Tail-biting) convolutional codes

Modern

- Turbo codes (parallel concatenation)
- Low-density parity-check (LDPC) codes, binary and non-binary
- Polar codes

Decoder Types Complete vs. Incomplete⁹

successive cancellation etc.

Incomplete:

- bounded distance*
- belief propagation* etc.

⁹G. Forney, "Exponential error bounds for erasure, list, and decision feedback schemes," IEEE Trans. Inf. Theory, 1968

Decoder Types Complete vs. Incomplete⁹

- successive cancellation etc.
- all errors are undetected

Incomplete:

- bounded distance*
- belief propagation* etc.
- error detection capability

⁹G. Forney, "Exponential error bounds for erasure, list, and decision feedback schemes," IEEE Trans. Inf. Theory, 1968

Outline

Preliminaries

- Efficient Short Classical Codes
 - Tail-Biting Convolutional Codes
 - Near Maximum Likelihood Decoding of Linear Block Codes
- Efficient Short Modern Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

Outline

Preliminaries

Efficient Short Classical Codes

- Tail-Biting Convolutional Codes
- Near Maximum Likelihood Decoding of Linear Block Codes
- Efficient Short Modern Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

Convolutional Codes Definitions by Example (Binary-Input Only)

- k₀ = 1 inputs and n₀ = 2 outputs per clock
- Nominal rate $R_0 = k_0/n_0 = 1/2$
- Memory m = 2

• $2^{k_0} = 2$ edges leaving each state

Convolutional codes to block codes: Run the encoder for k/k_0 clocks, then stop

Truncation: Block error probability rises to the last bits

Zero-tail: Improved block error probability BUT rate loss

$$R = \frac{k}{k+m}R_0$$

Tail-biting:

■ Force initial = final state

Tail-biting:

- Force initial = final state
- Codewords ≡ circular paths

Tail-biting:

- Force initial = final state
- Codewords ≡ circular paths
- No rate loss, but decoding gets more complex...

Unroll the tail-biting trellis

- Unroll the tail-biting trellis
- \blacksquare Run 2^m instances of the Viterbi algorithm, one per initial/final state hypothesis

- Unroll the tail-biting trellis
- \blacksquare Run 2^m instances of the Viterbi algorithm, one per initial/final state hypothesis

- Unroll the tail-biting trellis
- \blacksquare Run 2^m instances of the Viterbi algorithm, one per initial/final state hypothesis

- Unroll the tail-biting trellis
- \blacksquare Run 2^m instances of the Viterbi algorithm, one per initial/final state hypothesis

- Unroll the tail-biting trellis
- \blacksquare Run 2^m instances of the Viterbi algorithm, one per initial/final state hypothesis

Each decoder produces a decision (path): List of 2^m codewords

Select the most likely codeword in the list

- Unroll the tail-biting trellis
- \blacksquare Run 2^m instances of the Viterbi algorithm, one per initial/final state hypothesis

- Each decoder produces a decision (path): List of 2^m codewords
- Select the most likely codeword in the list
- Complexity of (almost) 2^m Viterbi decoders, quadratic in 2^m

- Runs the Viterbi algorithm successively for more iterations
- Improves the reliability of the decision at each iteration
- Achieves near-optimal performance

¹⁰R. Y.Shao, S. Lin, and M. P. Fossorier, "Two decoding algorithms for tailbiting codes," *IEEE Trans.* Commun., 2003

Start decoding with equiprobable initial states

- Start decoding with equiprobable initial states
- \blacksquare Run a first Viterbi algorithm iteration, and output the most likely path $\mathcal P$

- Start decoding with equiprobable initial states
- \blacksquare Run a first Viterbi algorithm iteration, and output the most likely path $\mathcal P$
- Is *P* a tail-biting path?

- Start decoding with equiprobable initial states
- \blacksquare Run a first Viterbi algorithm iteration, and output the most likely path $\mathcal P$
- Is *P* a tail-biting path?
 - YES: stop
 - NO: replace the initial state metrics with the computed final state metrics, and perform another Viterbi algorithm iteration

- Start decoding with equiprobable initial states
- \blacksquare Run a first Viterbi algorithm iteration, and output the most likely path $\mathcal P$
- Is *P* a tail-biting path?
 - YES: stop
 - NO: replace the initial state metrics with the computed final state metrics, and perform another Viterbi algorithm iteration

- Start decoding with equiprobable initial states
- \blacksquare Run a first Viterbi algorithm iteration, and output the most likely path $\mathcal P$
- Is *P* a tail-biting path?
 - YES: stop
 - NO: replace the initial state metrics with the computed final state metrics, and perform another Viterbi algorithm iteration
- A maximum number of iterations is allowed (e.g., 4)

Tail-Biting Convolutional Codes

Examples of Good (Time-Invariant) Tail-Biting Codes¹¹¹²

Generators (octal)	m	(n,k)	Minimum Distance
[515, 677]	8	(128, 64)	12
[5537, 6131]	11	(128, 64)	14
[75063, 56711]	14	(128, 64)	16
[515, 677]	8	(256, 128)	12
[5537, 6131]	11	(256, 128)	14
[75063, 56711]	14	(256, 128)	16

¹¹P. Stahl, J. B. Anderson, and R. Johannesson, "Optimal and near-optimal encoders for short and moderate-length tail-biting trellises," *IEEE Trans. Inf. Theory*, 1999

¹²R. Johannesson and K. S. Zigangirov, Fundamentals of convolutional coding. John Wiley & Sons, 2015

 E_b/N_0 , dB

Close to optimal at short block lengths ($k \le 100$ bits)

- Close to optimal at short block lengths ($k \le 100$ bits)
- Efficient decoding via wrap around Viterbi algorithm (incomplete decoding algorithm)

- Close to optimal at short block lengths ($k \le 100$ bits)
- Efficient decoding via wrap around Viterbi algorithm (incomplete decoding algorithm)
- For a fixed memory, performance does not improve with the block length

- Close to optimal at short block lengths ($k \le 100$ bits)
- Efficient decoding via wrap around Viterbi algorithm (incomplete decoding algorithm)
- For a fixed memory, performance does not improve with the block length
- Shall be employed only at the lowest part of the block length spectrum

Outline

Preliminaries

Efficient Short Classical Codes

- Tail-Biting Convolutional Codes
- Near Maximum Likelihood Decoding of Linear Block Codes
- Efficient Short Modern Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

Near Maximum Likelihood Decoding of Linear Block Codes Ordered Statistics Decoding¹⁵

- Idea: Use channel reliability measures to build a good subset of C (list)
- Apply a maximum likelihood search within the list only

¹⁵M. Fossorier and S. Lin, "Soft-decision decoding of linear block codes based on ordered statistics," IEEE Trans. Inf. Theory, 1995

 $^{^{13}\}text{A.}$ Valembois and M. Fossorier, "Box and match techniques applied to soft-decision decoding," IEEE Trans. Inf. Theory, 2004

¹⁴Y. Wu and C. Hadjicostis, "Soft-decision decoding using ordered recodings on the most reliable basis," IEEE Trans. Inf. Theory, 2007

Near Maximum Likelihood Decoding of Linear Block Codes Ordered Statistics Decoding¹⁵

- Idea: Use channel reliability measures to build a good subset of C (list)
- Apply a maximum likelihood search within the list only
- Can be applied to any linear block code (no specific structure required)
 - · No need to sacrifice minimum distance for structure

¹⁵M. Fossorier and S. Lin, "Soft-decision decoding of linear block codes based on ordered statistics," IEEE Trans. Inf. Theory, 1995

 $^{^{13}\}text{A.}$ Valembois and M. Fossorier, "Box and match techniques applied to soft-decision decoding," IEEE Trans. Inf. Theory, 2004

¹⁴Y. Wu and C. Hadjicostis, "Soft-decision decoding using ordered recodings on the most reliable basis," IEEE Trans. Inf. Theory, 2007

Near Maximum Likelihood Decoding of Linear Block Codes Ordered Statistics Decoding¹⁵

- Idea: Use channel reliability measures to build a good subset of C (list)
- Apply a maximum likelihood search within the list only
- Can be applied to any linear block code (no specific structure required)
 No need to sacrifice minimum distance for structure
- Several enhancements during the past decade (see e.g. ¹³¹⁴)

¹⁵M. Fossorier and S. Lin, "Soft-decision decoding of linear block codes based on ordered statistics," IEEE Trans. Inf. Theory, 1995

 $^{^{13}\}text{A.}$ Valembois and M. Fossorier, "Box and match techniques applied to soft-decision decoding," IEEE Trans. Inf. Theory, 2004

¹⁴Y. Wu and C. Hadjicostis, "Soft-decision decoding using ordered recodings on the most reliable basis," IEEE Trans. Inf. Theory, 2007

Ordered Statistics Decoding

Consider a (n,k) binary linear block code with $k \times n$ generator matrix ${f G}$

Over the binary input AWGN channel

 $y_i = x_i + n_i$

Sort y in decreasing order of reliability

$$\mathbf{y}' = \pi\left(\mathbf{y}\right) \qquad \text{with} \qquad |y_1'| \geq |y_2'| \geq \ldots \geq |y_n'|$$

 \blacksquare Sort $\mathbf y$ in decreasing order of reliability

$$\mathbf{y}' = \pi\left(\mathbf{y}\right) \qquad \text{with} \qquad |y_1'| \geq |y_2'| \geq \ldots \geq |y_n'|$$

• Permute the columns of G accordingly: $\mathbf{G}' = \pi \left(\mathbf{G} \right)$

 \blacksquare Sort $\mathbf y$ in decreasing order of reliability

$$\mathbf{y}' = \pi\left(\mathbf{y}\right) \qquad \text{with} \qquad |y_1'| \geq |y_2'| \geq \ldots \geq |y_n'|$$

 \blacksquare Permute the columns of \mathbf{G} accordingly: $\mathbf{G}'=\pi\left(\mathbf{G}\right)$

 Assume next that the first k columns of G' are linearly independent (information set)

Put \mathbf{G}' in systematic form by row operations only

$$\mathbf{G}_{\mathsf{sys}} = (\mathbf{I}|\mathbf{P})$$

 \blacksquare Sort $\mathbf y$ in decreasing order of reliability

$$\mathbf{y}' = \pi\left(\mathbf{y}\right) \qquad \text{with} \qquad |y_1'| \geq |y_2'| \geq \ldots \geq |y_n'|$$

 \blacksquare Permute the columns of \mathbf{G} accordingly: $\mathbf{G}'=\pi\left(\mathbf{G}\right)$

 Assume next that the first k columns of G' are linearly independent (information set)

Put \mathbf{G}' in systematic form by row operations only

$$\mathbf{G}_{\mathsf{sys}} = (\mathbf{I}|\mathbf{P})$$

 \blacksquare Take a bit-by-bit hard decision \mathbf{u}' on the first k elements of \mathbf{y}'

. . .

Produce the all the k-bit error vectors with Hamming weight
 t (t is the order of the OSD)

$$\begin{split} \text{weight} &- 0 \quad \mathbf{e}_0 &= & (0,0,0,\ldots,0,0) \\ \text{weight} &- 1 \begin{cases} \mathbf{e}_1 &= & (1,0,0,\ldots,0,0) \\ \mathbf{e}_2 &= & (0,1,0,\ldots,0,0) \\ & & & \\ \mathbf{e}_k &= & (0,0,0,\ldots,0,1) \\ \mathbf{e}_{k+2} &= & (1,1,0,\ldots,0,0) \\ \mathbf{e}_{k+2} &= & (1,0,1,\ldots,0,0) \\ & & \\ \mathbf{e}_{k+k(k-1)/2} &= & (0,0,0,\ldots,1,1) \end{split}$$

• Test error patterns list
$$\mathcal{E}$$
, size $|\mathcal{E}| = \sum_{\ell=0}^{t} \binom{k}{\ell}$
• Build a list of $\mathcal{L} = \left\{ \mathbf{x}'_0 \, \mathbf{x}'_1 \dots \mathbf{x}'_{|\mathcal{E}|-1} \right\}$ of $|\mathcal{E}|$ codewords by
 $\mathbf{u}'_0 = \mathbf{u}' + \mathbf{e}_0$
 $\mathbf{u}'_1 = \mathbf{u}' + \mathbf{e}_1$
 $\mathbf{u}'_2 = \mathbf{u}' + \mathbf{e}_2$

$$\mathbf{u}_{|\mathcal{E}|-1}' = \mathbf{u}' + \mathbf{e}_{|\mathcal{E}|-1}$$

Test error patterns list \mathcal{E} , size $|\mathcal{E}| = \sum_{\ell=0}^{t} \binom{k}{\ell}$ Build a list of $\mathcal{L} = \left\{ \mathbf{x}'_0 \, \mathbf{x}'_1 \dots \mathbf{x}'_{|\mathcal{E}|-1} \right\}$ of $|\mathcal{E}|$ codewords by $\mathbf{c}'_0 = \mathbf{u}'_0 \mathbf{G}_{sys}$ $\mathbf{c}'_1 = \mathbf{u}'_1 \mathbf{G}_{sys}$ $\mathbf{c}'_2 = \mathbf{u}'_2 \mathbf{G}_{sys}$

$$\mathbf{c}'_{|\mathcal{E}|-1} = \mathbf{u}'_{|\mathcal{E}|-1} \mathbf{G}_{\mathsf{sys}}$$

Page 36/134

Ordered Statistics Decoding (3/3)

Test error patterns list \mathcal{E} , size $|\mathcal{E}| = \sum_{\ell=0}^{t} \binom{k}{\ell}$ Build a list of $\mathcal{L} = \{\mathbf{x}'_0 \, \mathbf{x}'_1 \dots \mathbf{x}'_{|\mathcal{E}|-1}\}$ of $|\mathcal{E}|$ codewords by $\mathbf{x}'_0 = 1 - 2\mathbf{c}'_0$ $\mathbf{x}'_1 = 1 - 2\mathbf{c}'_1$ $\mathbf{x}'_2 = 1 - 2\mathbf{c}'_2$

$$\mathbf{x}'_{|\mathcal{E}|-1} = 1 - 2\mathbf{c}'_{|\mathcal{E}|-1}$$

Test error patterns list
$$\mathcal{E}$$
, size $|\mathcal{E}| = \sum_{\ell=0}^{t} \binom{k}{\ell}$
Build a list of $\mathcal{L} = \{\mathbf{x}'_0 \, \mathbf{x}'_1 \dots \mathbf{x}'_{|\mathcal{E}|-1}\}$ of $|\mathcal{E}|$ codewords by
$$\mathbf{x}'_0 = 1 - 2\mathbf{c}'_0$$

$$\mathbf{x}'_1 = 1 - 2\mathbf{c}'_1$$

$$\mathbf{x}'_2 = 1 - 2\mathbf{c}'_2$$

$$\mathbf{x}_{|\mathcal{E}|-1}' = 1 - 2\mathbf{c}_{|\mathcal{E}|-1}'$$

• Perform a maximum likelihood search in the list \mathcal{L}

$$\hat{\mathbf{x}}' = \operatorname*{arg\,max}_{\mathbf{x}' \in \mathcal{L}} p(\mathbf{y}' | \mathbf{x}') \qquad \rightarrow \qquad \hat{\mathbf{x}} = \pi^{-1} \left(\hat{\mathbf{x}}' \right)$$

Ordered Statistics Decoding Example

• (6,3) shortened Hamming code

- Channel output $\mathbf{y} = (+0.2, +1.2, -0.2, +0.6, -0.1, +1.0)$
- Ordered observation $\mathbf{y}' = (y_2, y_6, y_4, y_1, y_3, y_5)$
- Permuted generator matrix

Ordered Statistics Decoding Example

• We select the OSD parameter t = 1

$$\mathbf{e}_0 = (0, 0, 0) \qquad \mathbf{e}_2 = (0, 1, 0) \\ \mathbf{e}_1 = (1, 0, 0) \qquad \mathbf{e}_3 = (0, 0, 1)$$

 \blacksquare Given the hard decision $\mathbf{u}'=(0,\,0,\,0)$ on \mathbf{y}'

$$\begin{aligned} \mathbf{u}_0' &= (0, 0, 0) \quad \rightarrow \mathbf{c}_0' = (0, 0, 0, 0, 0, 0) \quad \rightarrow \mathbf{x}_0' = (+1, +1, +1, +1, +1, +1) \\ \mathbf{u}_1' &= (1, 0, 0) \quad \rightarrow \mathbf{c}_1' = (1, 0, 0, 1, 1, 0) \quad \rightarrow \mathbf{x}_1' = (-1, +1, +1, -1, -1, +1) \\ \mathbf{u}_2' &= (0, 1, 0) \quad \rightarrow \mathbf{c}_2' = (0, 1, 0, 0, 1, 1) \quad \rightarrow \mathbf{x}_2' = (+1, -1, +1, +1, -1, -1) \\ \mathbf{u}_3' &= (0, 0, 1) \quad \rightarrow \mathbf{c}_3' = (0, 0, 1, 1, 0, 1) \quad \rightarrow \mathbf{x}_3' = (+1, +1, -1, -1, +1, -1) \end{aligned}$$

• Check that $\hat{\mathbf{x}}' = \mathbf{x}'_0$ which leads to $\hat{\mathbf{c}} = (0, 0, 0, 0, 0, 0)$

Is proportional to the list size

$$\mathcal{L}| = \sum_{\ell=0}^{t} \binom{k}{\ell}$$

 \blacksquare The list size explodes quickly with t

■ Example: (128, 64) code

$$t = 1 : |\mathcal{L}| = 65$$

$$t = 2 : |\mathcal{L}| = 2081$$

$$t = 3 : |\mathcal{L}| = 43745$$

$$t = 4 : |\mathcal{L}| = 679121$$

The performance approaches the one of a maximum likelihood decoder with sufficiently large t

- The performance approaches the one of a maximum likelihood decoder with sufficiently large t
- The longer the code, the higher t needs to be to get close to maximum likelihood decoding

- The performance approaches the one of a maximum likelihood decoder with sufficiently large t
- The longer the code, the higher t needs to be to get close to maximum likelihood decoding
 - \circ (24, 12) Golay code: t = 2
 - $\circ~(128,64)$ extended BCH code: t=4

For a given *t*, early stopping can be used to avoid testing all the

$$|\mathcal{L}| = \sum_{\ell=0}^{t} \binom{k}{\ell}$$

For a given *t*, early stopping can be used to avoid testing all the

$$|\mathcal{L}| = \sum_{\ell=0}^{t} \binom{k}{\ell}$$

candidates

• Define a threshold d > 0

For a given *t*, early stopping can be used to avoid testing all the

$$|\mathcal{L}| = \sum_{\ell=0}^{t} \binom{k}{\ell}$$

- Define a threshold d > 0
- While building the list, if one finds a codeword \mathbf{x}' s.t. $\|\mathbf{y} \mathbf{x}'\| < d$ then decoding stops and $\hat{\mathbf{x}}' = \mathbf{x}'$

For a given *t*, early stopping can be used to avoid testing all the

$$|\mathcal{L}| = \sum_{\ell=0}^{t} \binom{k}{\ell}$$

- Define a threshold d > 0
- While building the list, if one finds a codeword x' s.t. ||y x'|| < d then decoding stops and x̂' = x'</p>
- The threshold is typically related to the code minimum distance

For a given *t*, early stopping can be used to avoid testing all the

$$|\mathcal{L}| = \sum_{\ell=0}^{t} \binom{k}{\ell}$$

- Define a threshold d > 0
- While building the list, if one finds a codeword x' s.t. ||y x'|| < d then decoding stops and x̂' = x'</p>
- The threshold is typically related to the code minimum distance
- At high signal-to-noise ratios, the number of tested codewords drops by (several) orders of magnitude

Ordered Statistics Decoding

• OSD can be applied to any code: Also to turbo-like codes!

¹⁶M. P. C. Fossorier, "Iterative reliability-based decoding of low-density parity check codes," IEEE J. Sel. Areas Commun., 2001

Ordered Statistics Decoding

- OSD can be applied to any code: Also to turbo-like codes!
- First decoding attempt: Iterative
- Then, OSD only if iterative decoding fails

Hybrid iterative-OSD¹⁶

¹⁶M. P. C. Fossorier, "Iterative reliability-based decoding of low-density parity check codes," IEEE J. Sel. Areas Commun., 2001

Ordered Statistics Decoding Observations

Very promising in the short block length regime

Ordered Statistics Decoding Observations

- Very promising in the short block length regime
- Complexity does not scale yet favorably with n (especially due to the need of increasing the OSD order), but

Ordered Statistics Decoding Observations

- Very promising in the short block length regime
- Complexity does not scale yet favorably with n (especially due to the need of increasing the OSD order), but

 \ldots research is on-going on the topic, and several enhancements can be used to extend the (block length) range of interest

Outline

Preliminaries

Efficient Short Classical Codes

Efficient Short Modern Codes

- Turbo Codes
- Binary Low-Density Parity-Check Codes
- Non-Binary Low-Density Parity-Check Codes
- Polar Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

Outline

Preliminaries

Efficient Short Classical Codes

Efficient Short Modern Codes

- Turbo Codes
- Binary Low-Density Parity-Check Codes
- Non-Binary Low-Density Parity-Check Codes
- Polar Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

Parallel Concatenated Convolutional Codes

- Turbo codes with <u>16-states component</u> codes provide the excellent trade-off between minimum distance and decoding threshold¹⁷¹⁸
- Tail-biting component codes reduce termination overhead¹⁹²⁰
- Interleaver design is crucial

FB/FFW Polynomial (Octal)	$(E_b/N_0)^*$, $R = 1/2$	Notes
27/37	0.56 dB	16-states
23/35	0.62 dB	16-states
15/13	0.70 dB	8-states

¹⁷C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes," in *Proc. ICC*, 1993

¹⁸H. El-Gamal and J. Hammons, AR., "Analyzing the turbo decoder using the gaussian approximation," IEEE Trans. Inf. Theory, 2001

¹⁹C. Weiss, C. Bettstetter, and S. Riedel, "Code construction and decoding of parallel concatenated tailbiting codes," *IEEE Trans. Inf. Theory*, 2001

²⁰T. Jerkovits and B. Matuz, "Turbo code design for short blocks," in Proc. 7th Advanced Satellite Mobile Systems Conference, 2016

Parallel Concatenated Convolutional Codes Factor Graph

Turbo codes factor graphs²¹ are characterized by large girth

²¹N. Wiberg, "Codes and decoding on general graphs," Ph.D. dissertation, Linköping University, 1996

Parallel Concatenated Convolutional Codes Interleavers

- The interleaver is the main responsible for large girth and spread (essential for large d_{min})
- Yet, $d_{\min} = \mathcal{O}(\log n)$
- Among the best-known constructions
 - Dithered-Relative-Prime (DRP)²²
 - Quadratic permutation polynomial (QPP) LTE ²³

²³O. Takeshita, "On maximum contention-free interleavers and permutation polynomials over integer rings," IEEE Trans. Inf. Theory, 2006

²²S. Crozier and P. Guinand, "High-performance low-memory interleaver banks for turbo-codes," in *Proc. IEEE VTC*, 2001

 E_b/N_0 , dB

 E_b/N_0 , dB

Turbo Codes Observations

 \blacksquare Performance within $0.5~{\rm dB}$ from RCB at moderate error rates

Turbo Codes Observations

- \blacksquare Performance within $0.5~{\rm dB}$ from RCB at moderate error rates
- Decoding can be partially parallelized

Turbo Codes Observations

- \blacksquare Performance within $0.5~{\rm dB}$ from RCB at moderate error rates
- Decoding can be partially parallelized
- 16-states tail-biting component codes: Good compromise between decoding complexity and performance

Outline

Preliminaries

Efficient Short Classical Codes

Efficient Short Modern Codes

- Turbo Codes
- Binary Low-Density Parity-Check Codes
- Non-Binary Low-Density Parity-Check Codes
- Polar Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

Low-Density Parity-Check Codes Graphical Representation of the Parity-Check Matrix

• Low-density²⁴ H matrix imposing a set of n - k constraints

Graphical representation via Tanner graphs²⁵

- Codeword bits \equiv variable nodes (VNs)
- Check equations \equiv check nodes (CNs)

²⁴R. Gallager, *Low-density parity-check codes*, 1963

²⁵M. Tanner, "A recursive approach to low complexity codes," IEEE Trans. Inf. Theory, 1981

Low-Density Parity-Check Codes Graphical Representation of the Parity-Check Matrix

Graphical representation via Tanner graphs (cont'd)

- The $\mathscr{C}^n_{(d_v,d_c)}$ regular unstructured LDPC ensemble is the set of binary linear block codes defined by a Tanner graph with
 - $^\circ~n$ variable nodes, having degree d_v
 - $\circ \ n d_v/d_c$ check nodes with degree d_c
 - Edge permutation picked uniformly at random

 An irregular LDPC code graph is often characterized by the distributions of degrees of variable and check nodes

- An irregular LDPC code graph is often characterized by the distributions of degrees of variable and check nodes
- The node-oriented variable node degree distribution is denoted by $\Lambda = \{\Lambda_i\}$, where Λ_i is the fraction of VNs with degree i

- An irregular LDPC code graph is often characterized by the distributions of degrees of variable and check nodes
- The node-oriented check node degree distribution is denoted by $\mathbf{P} = \{P_i\}$, where P_i is the fraction of CNs with degree j

- The edge-oriented variable node degree distribution is denoted by $\lambda = \{\lambda_i\}$, where λ_i is the fraction of edges connected to VNs with degree i
- The edge-oriented check node degree distribution is denoted by $\rho = \{\rho_j\}$, where ρ_j is the fraction of edges connected to CNs with degree j

Degree distributions are often given in polynomial form

$$\begin{split} \Lambda(x) &= \sum_{i} \Lambda_{i} x^{i} \qquad \text{and} \qquad \mathsf{P}(x) = \sum_{j} \mathsf{P}_{j} x^{j} \\ \lambda(x) &= \sum_{i} \lambda_{i} x^{i-1} \qquad \text{and} \qquad \rho(x) = \sum_{j} \rho_{j} x^{j-1} \end{split}$$

We have that

$$\lambda(x) = \frac{\Lambda'(x)}{\Lambda'(1)} \qquad \text{and} \qquad \rho(x) = \frac{\mathsf{P}'(x)}{\mathsf{P}'(1)}$$

with

$$\Lambda'(x) = \frac{\mathrm{d}\Lambda(x)}{\mathrm{d}x}$$
 and $\mathsf{P}'(x) = \frac{\mathrm{d}\mathsf{P}(x)}{\mathrm{d}x}$

- The Cⁿ_(Λ,P) irregular unstructured LDPC ensemble is the set of binary linear block codes defined by a Tanner graph with
 - $^\circ~n$ variable nodes whose degrees are distributed according to Λ
 - $\circ~m$ check nodes with degrees are according to ${\bf P}$
 - Edge permutation picked uniformly at random

LDPC Codes: Unstructured vs. Structured Ensembles Basics

- Unstructured graphs are easy to analyze, but
 - Are difficult to implement in actual (hardware) decoders
 - Allow limited control on edge connectivity properties
- A refined definition leads to structured LDPC ensembles
 - Repeat-Accumulate-like Codes²⁶
 - Protograph Codes²⁷
 - Multi-Edge-Type Codes²⁸

²⁸T. Richardson and R. Urbanke, "Multi-edge type LDPC codes," 2004, unpublished

²⁶H. Jin, A. Khandekar, and R. McEliece, "Irregular repeat-accumulate codes," in *Proc. IEEE Int. Symp. Turbo Codes and Related Topics*, 2000

²⁷ J. Thorpe, "Low-density parity-check (LDPC) codes constructed from protographs," IPN Progress Report, 2003

LDPC Codes: Structured Ensembles

Structured LDPC Code

- Protograph: small Tanner graph used as template to build the code graph
- Equivalent representation: base matrix

$$\mathbf{B} = \left(\begin{array}{rrr} 2 & \mathbf{1} & \mathbf{0} \\ 1 & \mathbf{1} & \mathbf{1} \end{array}\right)$$

- A protograph can be used to construct a larger Tanner graph by a copy & permute procedure
- The larger Tanner graph defines the code
- **First step**: Protograph is copied *Q* times

	(2	0	0	0	1	0	0	0	0	0	0	0)
$\mathbf{B}' =$		0	2	0	0	0	1	0	0	0	0	0	0
		0	0	2	0	0	0	1	0	0	0	0	0
		0	0	0	2	0	0	0	1	0	0	0	0
		1	0	0	0	1	0	0	0	1	0	0	0
		0	1	0	0	0	1	0	0	0	1	0	0
		0	0	1	0	0	0	1	0	0	0	1	0
	ſ	0	0	0	1	0	0	0	1	0	0	0	1

- Second step: Permute edges among the replicas
- Permutations shall avoid parallel edges

	(1	1	0	0	0	1	0	0	0	0	0	0)	
H =		1	0	1	0	0	0	0	1	0	0	0	0	l
		0	0	1	1	0	0	1	0	0	0	0	0	ł
		0	1	0	1	1	0	0	0	0	0	0	0	l
		1	0	0	0	1	0	0	0	0	1	0	0	l
		0	0	1	0	0	0	0	1	0	0	1	0	l
		0	1	0	0	0	0	1	0	1	0	0	0	l
	ſ	0	0	0	1	0	1	0	0	0	0	0	1 /	

- Second step: Permute edges among the replicas
- Permutations shall avoid parallel edges

- Second step: Permute edges among the replicas
- Permutations shall avoid parallel edges

A protograph defines structured LDPC code ensemble: The iterative decoding threshold and distance properties follow from the protograph

- Depending on code length, the expansion can be done in more steps
- In each step, girth optimization techniques²⁹ are used
- The final expansion is usually performed by means of circulant permutation matrices (quasi-cyclic code)³⁰

²⁹X.-Y. Hu, E. Eleftheriou, and D. Arnold, "Regular and irregular progressive edge-growth Tanner graphs," IEEE Trans. Inf. Theory, 2005

³⁰W. Ryan and S. Lin, Channel codes – Classical and modern. Cambridge Univ. Press, 2009

- Depending on code length, the expansion can be done in more steps
- In each step, girth optimization techniques²⁹ are used
- The final expansion is usually performed by means of circulant permutation matrices (quasi-cyclic code)³⁰

²⁹X.-Y. Hu, E. Eleftheriou, and D. Arnold, "Regular and irregular progressive edge-growth Tanner graphs," IEEE Trans. Inf. Theory, 2005

³⁰W. Ryan and S. Lin, Channel codes – Classical and modern. Cambridge Univ. Press, 2009

- Punctured (state) and degree-1 variable nodes are allowed
- Near-capacity thresholds can be achieved with lower average degrees than unstructured LDPC codes → larger girth
- Example: Accumulate-Repeat-3-Accumulate (AR3A), R = 1/2, $(E_b/N_0)^* = 0.475$ dB, only 0.3 dB from Shannon limit

- Allow controlling in finer way the edge connectivity³¹
- Example: consider the based matrices

$$\mathbf{B}_1 = \left(\begin{array}{rrrrr} 1 & 2 & 1 & 1 & 0 \\ 2 & 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{array}\right) \qquad \mathbf{B}_2 = \left(\begin{array}{rrrrr} 1 & 3 & 1 & 0 & 0 \\ 2 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \end{array}\right)$$

They describe sub-ensembles of the unstructured ensemble defined by

$$\Lambda(x) = 0.2x + 0.4x^{2} + 0.2x^{4} + 0.2x^{5}, \qquad P(x) = 0.333x^{4} + 0.667x^{5}$$

with degree-5 VNs punctured

However, $(E_b/N_0)_1^{\star} = 0.475 \text{ dB}$ while $(E_b/N_0)_2^{\star} = +\infty \text{ dB}$

³¹G. Liva and M. Chiani, "Protograph LDPC codes design based on EXIT analysis," in *Proc. IEEE Global Telecommun. Conf.*, 2007

Protograph Ensembles: Accumulator-based Repeat-Accumulate

- Accumulator-based LDPC codes admit simple protograph representation
- \blacksquare Very low decoding thresholds with low average degrees \rightarrow large girth
- Repeat-accumulate (RA) codes³²

³²D. Divsalar, S. Dolinar, J. Thorpe, and C. Jones, "Constructing LDPC codes from simple loop-free encoding modules," in *Proc. IEEE Int. Conf. Commun. (ICC)*, 2005
Protograph Ensembles: Accumulator-based Example: AR3A Protograph

Accumulate-Repeat-3-Accumulate (AR3A) Protograph³³

³³D. Divsalar, S. Dolinar, C. Jones, and K. Andrews, "Capacity-approaching protograph codes," IEEE JSAC, 2009

Protograph Ensembles: Accumulator-based AR3A Protograph Thresholds

R	$(E_b/N_0)^*$	Shannon Limit
7/8	3.139 dB	$2.845 \ dB$
4/5	$2.283 \; \mathrm{dB}$	$2.040 \ dB$
3/4	$1.845 \; \mathrm{dB}$	1.626 dB
2/3	$1.295 \; \mathrm{dB}$	$1.059 \; dB$
1/2	$0.475~\mathrm{dB}$	0.187 dB
1/3	$-0.050 \; \mathrm{dB}$	$-0.495~\mathrm{dB}$
1/4	$-0.554~\mathrm{dB}$	$-0.794~\mathrm{dB}$
1/5	$-0.755~\mathrm{dB}$	$-0.964~\mathrm{dB}$
1/6	$-0.791~\mathrm{dB}$	$-1.073~\mathrm{dB}$
1/8	$-0.962~\mathrm{dB}$	$-1.204~\mathrm{dB}$

 E_b/N_0 , dB

 E_b/N_0 , dB

 Serial concatenation of a high-rate protograph-based outer LDPC code, and a protograph-based LT code³⁴

$$\mathbf{B} = \begin{pmatrix} \mathbf{B}_{\text{o}} \mid \mathbf{0} \\ \hline \mathbf{B}_{\text{LT}} \end{pmatrix}$$

³⁴T.-Y. Chen, K. Vakilinia, D. Divsalar, and R. D. Wesel, "Protograph-based raptor-like LDPC codes," 2014. [Online]. Available: http://arxiv.org/abs/1403.2111

 Serial concatenation of a high-rate protograph-based outer LDPC code, and a protograph-based LT code³⁴

$$\mathbf{B} = \left(\begin{array}{c|c} \mathbf{B}_{\mathsf{o}} & \mathbf{0} \\ \hline & \mathbf{B}_{\mathsf{LT}} \end{array} \right)$$

Although the construction targets short block lengths, the outer code parity-check matrix density prevents from obtaining large girths at very short block lengths

³⁴T.-Y. Chen, K. Vakilinia, D. Divsalar, and R. D. Wesel, "Protograph-based raptor-like LDPC codes," 2014. [Online]. Available: http://arxiv.org/abs/1403.2111

Large flexibility of rates, with thresholds within 0.5 dB from the Shannon limit

Large flexibility of rates, with thresholds within $0.5~\mathrm{dB}$ from the Shannon limit

R	$(E_b/N_0)^*$	Shannon Limit
6/7	3.077 dB	2.625 dB
6/8	1.956 dB	1.626 dB
6/9	1.392 dB	1.059 dB
6/10	1.078 dB	0.679 dB
6/11	0.798 dB	0.401 dB
6/12	$0.484 \; dB$	0.187 dB
6/13	0.338 dB	0.018 dB
6/14	$0.144 \; dB$	$-0.122~\mathrm{dB}$
6/15	0.072 dB	-0.238 dB
6/16	0.030 dB	-0.337 dB
6/17	$-0.024~\mathrm{dB}$	$-0.422~\mathrm{dB}$
6/18	$-0.150 \; \mathrm{dB}$	$-0.495~\mathrm{dB}$

5G proposal (enhanced mobile broadband) by Qualcomm: Raptor-like

5G proposal (enhanced mobile broadband) by Qualcomm: Raptor-like

 E_b/N_0 , dB

 E_b/N_0 , dB

Binary Low-Density Parity-Check Codes Observations

Performance within 1 dB from RCB at short block lengths

Binary Low-Density Parity-Check Codes Observations

- Performance within 1 dB from RCB at short block lengths
- Protograph construction fundamental to achieve good performance with practical decoders

Binary Low-Density Parity-Check Codes Observations

- Performance within 1 dB from RCB at short block lengths
- Protograph construction fundamental to achieve good performance with practical decoders
- Depending on the code design, strong error detection capability

Outline

Preliminaries

Efficient Short Classical Codes

Efficient Short Modern Codes

- Turbo Codes
- Binary Low-Density Parity-Check Codes
- Non-Binary Low-Density Parity-Check Codes
- Polar Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

Non-Binary LDPC Codes Basics

Defined³⁵ by $M \times N$ sparse parity-check matrix H via the equation

$$\mathbf{c}\mathbf{H}^T = \mathbf{0}$$

where $\mathbf{c} \in \mathbb{F}_q^n$ and the elements of \mathbf{H} belong to \mathbb{F}_q , q > 2

• We are mainly interested in $q = 2^p$

Example: parity-check matrix over \mathbb{F}_{16}

$$\mathbf{H} = \begin{bmatrix} \alpha^3 & \alpha^7 & \alpha^3 & 0\\ \alpha^0 & 0 & \alpha^{12} & \alpha^{11} \end{bmatrix}$$

 $^{^{35}}$ M. Davey and D. MacKay, "Low density parity check codes over GF(q)," IEEE Commun. Lett., 1998

Non-Binary LDPC Codes Basics

- Codeword symbols ≡ variable nodes (VNs)
- Non-Binary Check equations = check nodes (CNs)

$$\mathbf{H} = \left(\begin{array}{cccc} \alpha^2 & \alpha^0 & 0 & \alpha^7 & 0 & 0\\ \alpha^5 & 0 & \alpha^{11} & 0 & \alpha^0 & 0\\ 0 & \alpha^2 & \alpha^3 & 0 & 0 & \alpha^{10} \end{array}\right)$$

Non-Binary LDPC Codes Basics

- Binary image of the code: in the codeword, replace each symbol in F_q with its length-p, p = log₂ q, binary representation
- Next, we will always refer to the binary block length n = Np bits

Non-Binary LDPC Codes Belief Propagation Decoding

Messages are vectors of q probabilities

- Convolution of messages at the check nodes
- Decoding complexity scales as quadratically in q
- It can be reduced to $\mathcal{O}(q\log_2 q)$ by performing the CN operation via fast Fourier transform 36

³⁶L. Barnault and D. Declercq, "Fast decoding algorithm for LDPC over GF(2^q)," in *Proc. IEEE Inf. Theory Workshop (ITW)*, 2003

Non-Binary LDPC Codes Ultra-Sparse Ensembles: Cycle LDPC Codes

- Non-Binary LDPC codes constructed on relatively-large fields ($q \ge 64$) perform particularly well when the graph is ultra-sparse³⁷
- Constant variable node degree $d_v = 2$, uniform check node degree
- Ultra-sparse LDPC Codes are actually instances of cycle codes³⁸

 37 C. Poulliat, M. Fossorier, and D. Declercq, "Design of regular $(2,\,d_c)$ -LDPC codes over ${\rm GF}(q)$ using their binary images," *IEEE Trans. Commun.*, 2008

³⁸S. Hakimi and J. Bredeson, "Graph theoretic error-correcting codes," IEEE Trans. Inf. Theory, 1968

Cycle LDPC Codes Distance Properties

- Cycle code ensemble: $d_{\min} = \mathcal{O}(\log n)$
- Beyond girth optimization, the minimum distance of the binary image of the code can be kept sufficiently large by a proper choice of the parity-check matrix coefficients
- Choosing the coefficients in a parity-check matrix which optimizes the minimum distance of the binary image of the code is a formidable task...

- Less complex (sub-optimum): optimize the coefficients row-wise³⁹
- **Example:** Parity-check matrix over \mathbb{F}_{256} , $p(x) = x^8 + x^4 + x^3 + x^2 + 1$

$$\mathbf{H} = \left[\begin{array}{ccc} \alpha^8 & \alpha^{80} & \alpha^0 & 0\\ \alpha^0 & \alpha^{41} & \alpha^{122} & \alpha^{113} \end{array} \right]$$

The first row imposes the equation $c_1 \alpha^8 + c_2 \alpha^{80} + c_3 \alpha^0 = 0$, i.e.

$$[c_1, c_2, c_3] \mathbf{h}_1^T = 0$$
 $\mathbf{h}_1 = \left[\alpha^8, \alpha^{80}, \alpha^0\right]$

(non-binary SPC code)

 $^{^{39}}$ C. Poulliat, M. Fossorier, and D. Declercq, "Design of regular $(2,\,d_c)$ -LDPC codes over ${\rm GF}(q)$ using their binary images," *IEEE Trans. Commun.*, 2008

• Let us analyze the binary code associated with the non-binary SPC code with parity-check matrix $\mathbf{h}_1^T = \left[\alpha^8, \alpha^{80}, \alpha^0 \right]$

• Companion matrix of $p(x) = \sum_{i=0}^{8} p_i x^i = x^8 + x^4 + x^3 + x^2 + 1$

$$\mathbf{M} = \left(\begin{array}{cccccccccccc} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 \end{array}\right)$$

Denote by c_1 the 8-bits representation of the symbol c_1 , and by s_1 the 8-bits binary image of $s_1 = c_1 \alpha^i$. Then

$$\mathbf{s}_1 = \mathbf{c}_1 \mathbf{M}^i$$

• The binary code associated with the non-binary SPC code having $\mathbf{h}_1^T = \begin{bmatrix} \alpha^8, \alpha^{80}, \alpha^0 \end{bmatrix}$ has parity-check matrix given by

$$\mathbf{H}_{r}^{\mathsf{b}} = \left[\mathbf{M}^{8}|\mathbf{M}^{80}|\mathbf{I}
ight]$$

 \blacksquare This is the parity-check matrix of a (24,16) binary linear block code

Distance spectrum of the code with parity-check matrix given by

$$\mathbf{H}_{r}^{\mathsf{b}} = \left[\mathbf{M}^{8}|\mathbf{M}^{80}|\mathbf{I}
ight]$$

via MacWilliams identity⁴⁰

$$A(x) = \frac{1}{2^{n-k}} (1+x)^n B\left(\frac{1-x}{1+x}\right)$$

where A(x) is the WEF we are interested in, and B(x) is the one of the dual code (having \mathbf{H}_r^b as generator matrix)

⁴⁰ J. MacWilliams and N. Sloane, *The theory of error-correcting codes*. North Holland Mathematical Libray, 1977

Distance spectrum of the code with parity-check matrix given by

$$\mathbf{H}_{r}^{\mathsf{b}} = \left[\mathbf{M}^{8}|\mathbf{M}^{80}|\mathbf{I}
ight]$$

$$\begin{split} A(x) &= 1 + 40x^4 + 202x^5 + 502x^6 + 1307x^7 + 2980x^8 + 5082x^9 + 7486x^{10} + \\ &\quad + 9854x^{11} + 10698x^{12} + 9686x^{13} + 7618x^{14} + 5076x^{15} + 2875x^{16} + \\ &\quad + 1406x^{17} + 522x^{18} + 146x^{19} + 46x^{20} + 8x^{21} + x^{23} \end{split}$$

List of good row coefficients, $\mathbb{F}_{256},$ check node degree 3

Coefficients, $\left[\alpha^{i} \alpha^{j} \alpha^{0}\right]$	Minimum Distance	Multiplicity
$\left[\alpha^8 \alpha^{183} \alpha^0\right]$	4	36
$\left[\alpha^{10}\alpha^{82}\alpha^{0}\right]$	4	37
$\left[\alpha^{16} \alpha^{167} \alpha^0 \right]$	4	37
$\left[lpha^{41} lpha^{127} lpha^{0} ight]$	4	37
$\left[lpha^{41} lpha^{128} lpha^0 ight]$	4	37
$\left[\alpha^{42}\alpha^{128}\alpha^{0}\right]$	4	37
$\left[\alpha^{86} \alpha^{214} \alpha^0\right]$	4	37

 E_b/N_0 , dB

 E_b/N_0 , dB

Non-Binary Turbo Codes Basics

- Turbo codes on high-order fields⁴¹ as LDPC codes⁴²
- Memory-1 (in field symbols), time-variant convolutional codes

- ⁴¹ J. Berkmann, Iterative Decoding of Nonbinary Codes. Munich, Germany: Ph.D. dissertation, Tech. Univ. München, 2000
- ⁴²G. Liva, E. Paolini, B. Matuz, S. Scalise, and M. Chiani, "Short turbo codes over high order fields," *IEEE Trans. Commun.*, 2013

Turbo Codes based on Memory-1 **Time-Variant RCCs** Decoding

- Decoding over the q-states trellis of the component codes
- q branches leaving/entering a state in each section
- Decoding complexity scales as $\mathcal{O}(q^2)$
- \blacksquare Can be reduced to $\mathcal{O}(q\log_2 q)$ by decoding through fast Fourier transform 43

⁴³ J. Berkmann and C. Weiss, "On dualizing trellis-based APP decoding algorithms," IEEE Trans. Commun., 2002

Non-Binary Turbo Codes Memory-1 Time-Variant Recursive Convolutional Codes

The codes admit a non-binary protograph LDPC code representation

Decoding threshold as for cycle LDPC codes: $\mathbb{F}_{256} R = 1/3$ protograph ensemble possesses $(E_b/N_0)^* = -0.214$ dB vs. $(E_b/N_0)^* = -0.225$ dB of the unstructured one

Turbo Codes based on Memory-1 **Time-Variant RCCs** Interleaver Design and Graph Interpretation

 For binary turbo codes, a large-spread regular interleaver is not an option, due to the large multiplicity of minimum-weight codewords

⁴⁴C. Radebaugh, C. Powell, and R. Koetter, "Wheel codes: Turbo-like codes on graphs of small order," in Proc. IEEE Inf. Theory Workshop (ITW), 2003

Turbo Codes based on Memory-1 **Time-Variant RCCs** Interleaver Design and Graph Interpretation

- For binary turbo codes, a large-spread regular interleaver is not an option, due to the large multiplicity of minimum-weight codewords
- The interleaver shall sacrifice spread for irregularity (randomness)

⁴⁴C. Radebaugh, C. Powell, and R. Koetter, "Wheel codes: Turbo-like codes on graphs of small order," in Proc. IEEE Inf. Theory Workshop (ITW), 2003

Turbo Codes based on Memory-1 **Time-Variant RCCs** Interleaver Design and Graph Interpretation

- For binary turbo codes, a large-spread regular interleaver is not an option, due to the large multiplicity of minimum-weight codewords
- The interleaver shall sacrifice spread for irregularity (randomness)
- For non-binary turbo codes, the component codes do not have anymore a periodic trellis (time-variant FB/FFW coefficients), thus large-spread regular interleavers can be used⁴⁴

⁴⁴C. Radebaugh, C. Powell, and R. Koetter, "Wheel codes: Turbo-like codes on graphs of small order," in Proc. IEEE Inf. Theory Workshop (ITW), 2003

• Non-binary turbo codes can be defined by the graph of a cycle code

Tail-biting trellis (1st component code)

• Non-binary turbo codes can be defined by the graph of a cycle code

• Non-binary turbo codes can be defined by the graph of a cycle code

Tail-biting trellis (1st component code)

• Non-binary turbo codes can be defined by the graph of a cycle code

Tail-biting trellis (1st component code)

 E_b/N_0 , dB

Remarkably close to the RCB

- Remarkably close to the RCB
- Ultra-sparse design is nearly-optimal with large field orders

- Remarkably close to the RCB
- Ultra-sparse design is nearly-optimal with large field orders
- Low error floors

- Remarkably close to the RCB
- Ultra-sparse design is nearly-optimal with large field orders
- Low error floors
- High decoding complexity

Outline

Preliminaries

Efficient Short Classical Codes

Efficient Short Modern Codes

- Turbo Codes
- Binary Low-Density Parity-Check Codes
- Non-Binary Low-Density Parity-Check Codes
- Polar Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

Polar Codes Introduction

 Class of provably capacity achieving codes over memoryless binary input output symmetric channels under low-complexity (successive cancellation) decoding⁴⁵

⁴⁶I. Tal and A. Vardy, "List decoding of polar codes," *IEEE Trans. Inf. Theory*, 2015

⁴⁵E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," *IEEE Trans. Inf. Theory*, 2009

Polar Codes Introduction

- Class of provably capacity achieving codes over memoryless binary input output symmetric channels under low-complexity (successive cancellation) decoding⁴⁵
- Their performance at short block lengths is disappointing but...

⁴⁶I. Tal and A. Vardy, "List decoding of polar codes," *IEEE Trans. Inf. Theory*, 2015

⁴⁵E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," *IEEE Trans. Inf. Theory*, 2009

Polar Codes Introduction

 Class of provably capacity achieving codes over memoryless binary input output symmetric channels under low-complexity (successive cancellation) decoding⁴⁵

Their performance at short block lengths is disappointing but...

list decoding with the aid of an outer-high rate code⁴⁶ yields one of the best code constructions at short block lengths!

⁴⁶I. Tal and A. Vardy, "List decoding of polar codes," *IEEE Trans. Inf. Theory*, 2015

⁴⁵E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," *IEEE Trans. Inf. Theory*, 2009

Polar Codes

$$\mathbf{x} = \mathbf{v}\mathbf{G}_2 \qquad \qquad \mathbf{G}_2 = \left(\begin{array}{cc} 1 & 0\\ 1 & 1 \end{array}\right)$$

Polar Codes

$$\mathbf{x} = \mathbf{v}\mathbf{G}_2 \qquad \qquad \mathbf{G}_2 = \left(\begin{array}{cc} 1 & 0\\ 1 & 1 \end{array}\right)$$

Polar Codes

Denote $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Then

 $\mathbf{x} = \mathbf{u}\mathbf{G}_n$

with \mathbf{G}_n being a $n \times n$ matrix with structure

 $\mathbf{G}_n = \mathbf{G}_2 \otimes \mathbf{G}_2 \otimes \ldots \otimes \mathbf{G}_2$

Polar Codes Example

With n = 8, $\mathbf{G}_8 = \mathbf{G}_2 \otimes \mathbf{G}_2 \otimes \mathbf{G}_2$

$$\mathbf{G}_8 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Polar Codes Example

$$p(\mathbf{y}|\mathbf{v}) = p(y_1|v_1 + v_2)p(y_2|v_2)$$

$$p(\mathbf{y}|v_1) = \sum_{v_2} p(\mathbf{y}, v_2|v_1) = \frac{1}{2} \sum_{v_2} p(y_1|v_1 + v_2) p(y_2|v_2)$$

$$p(\mathbf{y}, v_1|v_2) = p(\mathbf{y}|v_1, v_2)p(v_1) = \frac{1}{2}p(y_1|v_1 + v_2)p(y_2|v_2)$$

$$L_1' = 2 \tanh^{-1} \left(\tanh \left(\frac{L_1}{2} \right) \tanh \left(\frac{L_2}{2} \right) \right) \qquad \text{with} \qquad L_i = \log \frac{p(y_i|0)}{p(y_i|1)}$$

$$L_2' = L_2 + (-1)^{v_1} L_1$$

Polar Codes Code Design

• (n,k) polar code: $\mathcal{A} = \text{set of } k \text{ indexed in } \{1,2,\ldots,n\}$

• Map the k information bits on u_i , $i \in \mathcal{A}$

⁴⁸E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," *IEEE Trans. Inf. Theory*, 2009

⁴⁷N. Stolte, "Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung," Ph.D. dissertation, TU Darmstadt, 2002

Polar Codes Code Design

• (n,k) polar code: $\mathcal{A} = \text{set of } k \text{ indexed in } \{1,2,\ldots,n\}$

• Map the k information bits on u_i , $i \in \mathcal{A}$

Set the remaining elements of u to 0 (frozen bits)

⁴⁸E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," *IEEE Trans. Inf. Theory*, 2009

⁴⁷N. Stolte, "Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung," Ph.D. dissertation, TU Darmstadt, 2002

Polar Codes Code Design

• (n,k) polar code: $\mathcal{A} = \text{set of } k \text{ indexed in } \{1,2,\ldots,n\}$

• Map the k information bits on u_i , $i \in \mathcal{A}$

- Set the remaining elements of **u** to 0 (frozen bits)
- Selection of the frozen bits: For the target channel, find the least n k reliable bits in u under successive cancellation decoding⁴⁷⁴⁸

⁴⁸E. Arikan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," *IEEE Trans. Inf. Theory*, 2009

⁴⁷N. Stolte, "Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung," Ph.D. dissertation, TU Darmstadt, 2002
Polar Codes Example

•
$$(8,4)$$
 polar code: $\mathcal{A} = \{4, 6, 7, 8\}$

$$\mathbf{G}_8 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Polar Codes Example

•
$$(8,4)$$
 polar code: $\mathcal{A} = \{4,6,7,8\}$

• G: generator matrix of the
$$(8,4)$$
 polar code

Polar Codes

Example: $u_1 = u_2 = u_3 = u_5 = 0$ (frozen bits)

Polar Codes: Shortcomings

successive cancellation decoding perform poorly

(for large n), at

Albeit capacity-achieving

lengths polar codes under

moderate-short block

List decoding: Exploit the serial bit decision process to improve the SC decoder performance

List size L = 4

٠

 \hat{u}_i

List size L = 4

 \hat{u}_i

List size L = 4

$$\hat{u}_i$$
 \hat{u}_{i+1}

List size
$$L = 4$$

List size L = 4

$$\hat{u}_i \qquad \hat{u}_{i+1} \qquad \hat{u}_{i+2}$$

List size
$$L = 4$$

$$\hat{u}_i \qquad \hat{u}_{i+1} \qquad \hat{u}_{i+2}$$

$$\hat{u}_i \qquad \hat{u}_{i+1} \qquad \hat{u}_{i+2}$$

List size
$$L = 4$$

least likely paths

4

$$\hat{u}_i$$
 \hat{u}_{i+1} \hat{u}_{i+2} \hat{u}_{i+3} List size $L =$

$$\hat{u}_i$$
 \hat{u}_{i+1} \hat{u}_{i+2} \hat{u}_{i+3} List size $L = 4$

$$\hat{u}_i$$
 \hat{u}_{i+1} \hat{u}_{i+2} \hat{u}_{i+3} List size $L=4$

least likely paths

• After k steps, L codewords in the list \mathcal{L}

• After k steps, L codewords in the list \mathcal{L}

• After k steps, L codewords in the list \mathcal{L}

 \blacksquare Pick the codeword in $\mathcal L$ maximizing the likelihood

$$\hat{\mathbf{x}} = \arg\max_{\mathbf{x}\in\mathcal{L}} p\left(\mathbf{y}|\mathbf{x}\right)$$

Two error events:

• The correct codeword \mathbf{x} is not in the list

Two error events:

 \blacksquare The correct codeword ${\bf x}$ is not in the list

• The correct codeword \mathbf{x} is in the list but $\exists \mathbf{x}' \in \mathcal{L} \text{ s.t. } p(\mathbf{y}|\mathbf{x}') > p(\mathbf{y}|\mathbf{x})$

Two error events:

- \blacksquare The correct codeword ${\bf x}$ is not in the list
- The correct codeword \mathbf{x} is in the list but $\exists \mathbf{x}' \in \mathcal{L}$ s.t. $p(\mathbf{y}|\mathbf{x}') > p(\mathbf{y}|\mathbf{x})$ The error would take place even with ML decoding...

Two error events:

- \blacksquare The correct codeword ${\bf x}$ is not in the list
- The correct codeword \mathbf{x} is in the list but $\exists \mathbf{x}' \in \mathcal{L}$ s.t. $p(\mathbf{y}|\mathbf{x}') > p(\mathbf{y}|\mathbf{x})$ The error would take place even with ML decoding...

Performance limited by distance spectrum

Concatenation with an outer code to improve distance spectrum

List decoding (inner code), followed by syndrome check with outer code

Concatenation with an outer code to improve distance spectrum

List decoding (inner code), followed by syndrome check with outer code
Expurgated list: all codewords not satisfying the check are removed

Concatenation with an outer code to improve distance spectrum

List decoding (inner code), followed by syndrome check with outer code

- Expurgated list: all codewords not satisfying the check are removed
- Selection within the remaining codewords based on likelihood

Polar Codes Observations

With successive cancellation + list decoding and the aid of an outer code, consistently close to the normal approximation

⁴⁹G. Ricciutelli, M. Baldi, F. Chiaraluce, and G. Liva, "On the error probability of short concatenated polar and cyclic codes with interleaving," arXiv preprint arXiv:1701.07262, 2017

Polar Codes Observations

With successive cancellation + list decoding and the aid of an outer code, consistently close to the normal approximation

• Complexity growing with the list size *L*

⁴⁹G. Ricciutelli, M. Baldi, F. Chiaraluce, and G. Liva, "On the error probability of short concatenated polar and cyclic codes with interleaving," arXiv preprint arXiv:1701.07262, 2017

Polar Codes Observations

- With successive cancellation + list decoding and the aid of an outer code, consistently close to the normal approximation
- Complexity growing with the list size L
- Large list size: close to maximum-likelihood performance (but large complexity)

⁴⁹G. Ricciutelli, M. Baldi, F. Chiaraluce, and G. Liva, "On the error probability of short concatenated polar and cyclic codes with interleaving," arXiv preprint arXiv:1701.07262, 2017

Polar Codes Observations

- With successive cancellation + list decoding and the aid of an outer code, consistently close to the normal approximation
- Complexity growing with the list size *L*
- Large list size: close to maximum-likelihood performance (but large complexity)
- Error floor behavior only partially addressed⁴⁹

⁴⁹G. Ricciutelli, M. Baldi, F. Chiaraluce, and G. Liva, "On the error probability of short concatenated polar and cyclic codes with interleaving," arXiv preprint arXiv:1701.07262, 2017

Polar Codes Observations

- With successive cancellation + list decoding and the aid of an outer code, consistently close to the normal approximation
- Complexity growing with the list size L
- Large list size: close to maximum-likelihood performance (but large complexity)
- Error floor behavior only partially addressed⁴⁹
- Good trade-off between decoding complexity and performance

⁴⁹G. Ricciutelli, M. Baldi, F. Chiaraluce, and G. Liva, "On the error probability of short concatenated polar and cyclic codes with interleaving," arXiv preprint arXiv:1701.07262, 2017

Outline

Preliminaries

- Efficient Short Classical Codes
- Efficient Short Modern Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

CREDIT: Georg Böecherer, Fabian Steiner, Patrick Schulte, Tobias Prinz, Peihong Yuan (TUM, LNT)

Probabilistic Amplitude Shaping:

G. Böcherer, F. Steiner, and P. Schulte, "Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation",

CREDIT: Georg Böecherer, Fabian Steiner, Patrick Schulte, Tobias Prinz, Peihong Yuan (TUM, LNT)

Probabilistic Amplitude Shaping:

G. Böcherer, F. Steiner, and P. Schulte, "Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation",

IEEE Trans. Commun., 2015

Model from

O. İşcan, D. Lentner, and W. Xu, "A comparison of channel coding schemes for 5G short message transmission," in *Proc. Globecom*, 2016

Complete vs. Incomplete: Some Observations on Error Detection

Code Family	Decoding Algorithm	Complete/Incomplete
TBCC	WAVA	"Almost" complete
Linear Block	OSD	Complete
Polar+CRC	List	"Almost" complete for large lists
LDPCC	BP	Incomplete
Turbo	BP	Complete?

Outline

- Preliminaries
- Efficient Short Classical Codes
- Efficient Short Modern Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

- Decoding algorithms often requires some knowledge of the channel state
- Example: Communication over static fading channel

$$\mathbf{y} = h\mathbf{x} + \mathbf{n}$$
 $h \in \mathbb{C}$

- Decoding algorithms often requires some knowledge of the channel state
- Example: Communication over static fading channel

$$\mathbf{y} = h\mathbf{x} + \mathbf{n}$$
 $h \in \mathbb{C}$

Pragmatic (naive?) approach:

- Decoding algorithms often requires some knowledge of the channel state
- Example: Communication over static fading channel

$$\mathbf{y} = h\mathbf{x} + \mathbf{n}$$
 $h \in \mathbb{C}$

Pragmatic (naive?) approach:

• Estimate the channel h first by means of pilot tones (preamble)

- Decoding algorithms often requires some knowledge of the channel state
- Example: Communication over static fading channel

$$\mathbf{y} = h\mathbf{x} + \mathbf{n}$$
 $h \in \mathbb{C}$

- Pragmatic (naive?) approach:
 - Estimate the channel h first by means of pilot tones (preamble)
 - Decode assuming the channel

$$\mathbf{y} = \hat{\mathbf{h}}\mathbf{x} + \mathbf{n}$$

- Decoding algorithms often requires some knowledge of the channel state
- Example: Communication over static fading channel

$$\mathbf{y} = h\mathbf{x} + \mathbf{n}$$
 $h \in \mathbb{C}$

- Pragmatic (naive?) approach:
 - Estimate the channel h first by means of pilot tones (preamble)
 - Decode assuming the channel

$$\mathbf{y} = \hat{\mathbf{h}}\mathbf{x} + \mathbf{n}$$

 For long blocks (and slow fading), the cost of channel estimation is negligible

- Decoding algorithms often requires some knowledge of the channel state
- Example: Communication over static fading channel

$$\mathbf{y} = h\mathbf{x} + \mathbf{n}$$
 $h \in \mathbb{C}$

- Pragmatic (naive?) approach:
 - Estimate the channel h first by means of pilot tones (preamble)
 - Decode assuming the channel

$$\mathbf{y} = \hat{h}\mathbf{x} + \mathbf{n}$$

- For long blocks (and slow fading), the cost of channel estimation is negligible
- At short block lengths, the number of channel uses required to get a good channel estimate may be comparable with the number of information bits!

Problem statement: Transmit k information bits in n channel uses

n channel uses

|--|

• Problem statement: Transmit k information bits in n channel uses

• Problem statement: Transmit k information bits in n channel uses

• Problem statement: Transmit k information bits in n channel uses

• Problem statement: Transmit k information bits in n channel uses

• Problem statement: Transmit k information bits in n channel uses

• Problem statement: Transmit k information bits in n channel uses

• Problem statement: Transmit k information bits in n channel uses

• Overall rate: R = k/n FIXED

• Channel code rate: $R_c = k/(n-m)$

Mismatched Decoding⁵¹⁵²

- Suppose the channel estimate \hat{h} to be available by observing the preamble
- The decoder may treat \hat{h} as reliable and proceed by

$$\hat{\mathbf{x}} = \operatorname*{arg\,max}_{\mathbf{x}\in\mathcal{C}} p(\mathbf{y}|\mathbf{x}, \hat{\mathbf{h}})$$

$$= \underset{\mathbf{x}\in\mathcal{C}}{\arg\max} \prod_{i=1}^{n-m} p(y_i|x_i, \hat{h})$$

with

$$p(y|x, \hat{h}) = \frac{1}{2\pi\sigma^2} \exp\left[-\frac{1}{2\sigma^2}|y - \hat{h}x|^2\right]$$

⁵²N. Merhav, G. Kaplan, A. Lapidoth, and S. S. Shitz, "On information rates for mismatched decoders," IEEE Trans. Inf. Theory, 1994

⁵¹G. Kaplan and S. Shamai, "Information rates and error exponents of compound channels with application to antipodal signaling in a fading environment," AEU. Archiv für Elektronik und Übertragungstechnik, 1993

Mismatched Decoding

Mismatched decoding metric

$$q(y, x; \hat{h}) = p(y|x, \hat{h})$$

Maximum metric decoding

$$\hat{\mathbf{x}} = \arg\max_{\mathbf{x}\in\mathcal{C}} q(\mathbf{y}, \mathbf{x}; \hat{\mathbf{h}})$$
$$= \arg\max_{\mathbf{x}\in\mathcal{C}} \prod_{i=1}^{n-m} q(y_i, x_i; \hat{\mathbf{h}})$$

• Maximum metric decoding = maximum likelihood decoding if $\hat{h} = h$

Gallager's Random Coding Bound Mismatched Decoding Metric

Upper bound on $P_B(\mathcal{C}^\star; \hat{h})$ under the mismatched metric $q(y, x; \hat{h})$

$$P_B(\mathcal{C}^*; \hat{h}) \leq \mathbb{E}\left[P_B(\mathcal{C}; \hat{h})\right] \leq P_U(n - m, k; \hat{h})$$

$$P_U(\boldsymbol{n-m},k;\hat{\boldsymbol{h}}) = 2^{-(\boldsymbol{n-m})E_G(\boldsymbol{R}_c;\hat{\boldsymbol{h}})}$$

with

$$E_G(\boldsymbol{R_c}; \hat{\boldsymbol{h}})) = \max_{0 \le \rho \le 1} \sup_{s > 0} \left[E_0(\rho, s; \hat{\boldsymbol{h}}) - \rho \boldsymbol{R_c} \right]$$

and

$$E_0(\rho, s; \hat{\boldsymbol{h}}) = -\log_2 \mathbb{E}\left[\left(\frac{\mathbb{E}\left[q(Y, \tilde{X}; \hat{\boldsymbol{h}})^s \middle| Y\right]}{q(Y, X; \hat{\boldsymbol{h}})^s}\right)^{\rho}\right]$$

Gallager's Random Coding Bound Mismatched Decoding Metric

If the distribution of \hat{H} is available, then

$$\bar{P}_B(\mathcal{C}^*) = \mathbb{E}\left[P_B(\mathcal{C}^*; \hat{H})\right]$$

can be upper bounded by averaging $P_U(n-m,k;\hat{h})$ over the distribution of \hat{H}

$$\bar{P}_B(\mathcal{C}^{\star}) \leq \mathbb{E}\left[2^{-(n-m)E_G(R_c;\hat{H})}\right]$$

Dimensioning the Preamble Example

- Transmit k = 256 bits in n = 512 channel uses
- Channel code: (512, 256) irregular repeat accumulate code
- \blacksquare Puncturing m parity bits to leave space for the preamble

Dimensioning the Preamble Example

- Transmit k = 256 bits in n = 512 channel uses
- Channel code: (512, 256) irregular repeat accumulate code
- Puncturing m parity bits to leave space for the preamble
- Maximum likelihood channel estimation, h as deterministic unknown parameter

$$\frac{E_b}{N_0} = \frac{|h|^2}{2R\sigma^2}$$

Dimensioning the Preamble Example

- Transmit k = 256 bits in n = 512 channel uses
- Channel code: (512, 256) irregular repeat accumulate code
- \blacksquare Puncturing m parity bits to leave space for the preamble
- Maximum likelihood channel estimation, h as deterministic unknown parameter

$$\frac{E_b}{N_0} = \frac{|h|^2}{2R\sigma^2}$$

• Minimize the signal-to-noise ratio required to achieve $P_B = 10^{-3}$

Dimensioning the Preamble

Outline

- Preliminaries
- Efficient Short Classical Codes
- Efficient Short Modern Codes
- Two Case Studies
- Beyond Error Correction
- Conclusions

Thank you!

- Thomas Jerkovits (DLR) for the turbo codes and polar codes simulations (with very short notice...)
- Tudor Ninacs, Thomas Jerkovits (DLR) and Lorenzo Gaudio (Univ. of Parma) for the tail-biting convolutional codes simulations
- The Information Transmission Group at DLR: Mustafa Cemil Coşkun, Federico Clazzer, Giuseppe Cocco, Thomas Jerkovits, Francisco Lazaro Blasco, Balazs Matuz, Estefania Recayte
- Enrico Paolini and Marco Chiani (Univ. of Bologna)
- Gerhard Kramer, Georg Böcherer, Fabian Steiner, Patrick Schulte, Tobias Prinz and Peihong Yuan (TUM-LNT)