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Motivation

Transmission of small amounts of information1

� Wireless sensor networks
� Machine-type communications and IoT
� Ultra-reliable low-latency communications

� Small data

1G. Durisi, T. Koch, and P. Popovski, “Towards Massive, Ultra-Reliable, and Low-Latency Wireless: The
Art of Sending Short Packets,” ArXiv, 2015
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Performance vs. Complexity
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Latency vs. Blocklength

Low latency 6= Short blocks

Latency is more difficult to define234

� Encoding latency
� Transmission latency
� Decoding latency
� . . .

2T. Hehn and J.B.Huber, “LDPC codes and convolutional codes with equal structural delay: a comparison,”
IEEE Trans. Commun., 2009

3S. V. Maiya, D. J. Costello, and T. E. Fuja, “Low latency coding: Convolutional codes vs. ldpc codes,”
IEEE Trans. Commun., 2012

4C. Rachinger, J. B. Huber, and R. R. Müller, “Comparison of convolutional and block codes for low
structural delay,” IEEE Trans. Commun., 2015
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Latency vs. Blocklength
Decoding Latency

Frame
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Example: Viterbi with back-tracking decouples
block length and decoding latency



Page 5/134 G. Liva and F. Steiner · Codes for Short Blocks · March 29, 2017

What We Will Consider (and What Not)

We will consider
� Block length rather than latency

◦ Short blocks are not only required for low latency
◦ Wireless sensor networks, machine-type communications, etc.: The data

units can be inherently small

� The binary-input additive white Gaussian noise (AWGN) channel
� At some point, channel uncertainty

We will not consider
� Fading
� Feedback
� Synchronization
� High-order modulations (with an exception...)
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Preliminaries
Binary Input AWGN Channel
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block error prob.

Output alphabet Y ≡ R



Page 6/134 G. Liva and F. Steiner · Codes for Short Blocks · Preliminaries March 29, 2017

Preliminaries
Binary Input AWGN Channel

Encoder
Channel
p(y|x) Decoder

u

u1 u2... uk

x

x1 x2... xn

y

y1 y2... yn

û
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Binary Linear Block Codes

� (n, k) binary linear block code C: Defined by k × n generator matrix G
� Alternatively, it may be defined through its (n− k)× n parity-check

matrix H
cHT = 0

where 0 is the n− k-elements all-zero vector
� The parity-check matrix rows span the subspace orthogonal to C.

We denote such subspace as C⊥

c⊥v ∀c ∈ C,v ∈ C⊥.

� The vectors in C⊥ form a linear block code of dimension n− k, referred to
as dual code of C
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Finite-Length Benchmarks

Denote by C? the best (n, k) binary code

We are interested in

PB(C?)
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Gallager’s Random Coding Bound5

Upper bound on PB(C?)

PB(C?) ≤ E [PB(C)] ≤ PU (n, k)

where
PU (n, k) = 2−nEG(R)

with
EG(R) = max

0≤ρ≤1
[E0(ρ)− ρR]

and

E0(ρ) = − log2 E

E
[
p(Y |X̃)

1
1+ρ
∣∣Y ]

p(Y |X)
1

1+ρ

ρ

5R. Gallager, Information theory and reliable communication. Wiley, 1968
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Sphere Packing Bound6

PB(C?) ≥ PL(n, k)

where

PL(n, k)

is a lower bound on the error probability of n-dimensional spherical codes with
2k codewords (cone packing)

6C. Shannon, “Probability of error for optimal codes in a Gaussian channel,” Bell Sys. Tech. J., 1959
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Normal Approximation78

Approximation of PB(C?)

PB(C?) ≈ Q
(
n(C −R) + 1

2 log2 n√
nV

)
where with X ∼ uniform

C =E
[

log2
p(Y |X)
p(Y )

]
(channel capacity)

V =Var
[

log2
p(Y |X)
p(Y )

]
(channel dispersion)

7V. Strassen, “Asymptotische Abschätzungen in Shannon’s Informationstheorie,” Publ. Czech. Academy
of Sciences, 1962

8Y. Polyanskiy, V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE Trans.
Inf. Theory, 2010
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Spectre: short packet communication toolbox

https://sites.google.com/site/durisi/software
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Efficient Short Channel Codes

Classical
� Algebraic codes (BCH, Reed-Solomon, etc.)
� (Tail-biting) convolutional codes

Modern
� Turbo codes (parallel concatenation)
� Low-density parity-check (LDPC) codes, binary and non-binary
� Polar codes
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Decoder Types
Complete vs. Incomplete9
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9G. Forney, “Exponential error bounds for erasure, list, and decision feedback schemes,” IEEE Trans. Inf.
Theory, 1968

Complete:
� maximum-likelihood
� ordered statistics
� successive cancellation etc.

� all errors are undetected

Incomplete:
� bounded distance?

� belief propagation? etc.

� error detection capability
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Convolutional Codes
Definitions by Example (Binary-Input Only)

D D

⊕

⊕

ui

c
(1)
i

c
(2)
i

S0

S1

S2

S3

S0

S1

S2

S3

� k0 = 1 inputs and n0 = 2 outputs
per clock

� Nominal rate R0 = k0/n0 = 1/2
� Memory m = 2

� 2m states per section
� 2k0 = 2 edges leaving each state
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Trellises
Termination Strategies for Convolutional Codes

Convolutional codes to block codes: Run the encoder for k/k0 clocks, then stop

Truncation: Block error
probability rises to the
last bits

Zero-tail: Improved
block error probability
BUT rate loss

R =
k

k + m
R0
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Trellises
Termination Strategies for Convolutional Codes

Tail-biting:
� Force initial = final state

� Codewords ≡ circular paths
� No rate loss, but decoding

gets more complex...
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Tail-Biting Convolutional Codes
Maximum-Likelihood Decoding

� Unroll the tail-biting trellis

� Run 2m instances of the Viterbi algorithm, one per initial/final state
hypothesis

� Each decoder produces a decision (path): List of 2m codewords
� Select the most likely codeword in the list
� Complexity of (almost) 2m Viterbi decoders, quadratic in 2m
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Tail-Biting Convolutional Codes
Wrap-Around Viterbi Algorithm (WAVA)10

� Runs the Viterbi algorithm successively for more iterations
� Improves the reliability of the decision at each iteration
� Achieves near-optimal performance

10R. Y.Shao, S. Lin, and M. P. Fossorier, “Two decoding algorithms for tailbiting codes,” IEEE Trans.
Commun., 2003
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Tail-Biting Convolutional Codes
Wrap-Around Viterbi Algorithm (WAVA)

� Start decoding with equiprobable initial states

� Run a first Viterbi algorithm iteration, and output the most likely path P
� Is P a tail-biting path?

◦ YES: stop
◦ NO: replace the initial state metrics with the computed final state metrics,

and perform another Viterbi algorithm iteration

� A maximum number of iterations is allowed (e.g., 4)
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Tail-Biting Convolutional Codes
Examples of Good (Time-Invariant) Tail-Biting Codes1112

Generators (octal) m (n, k) Minimum Distance
[515, 677] 8 (128, 64) 12

[5537, 6131] 11 (128, 64) 14
[75063, 56711] 14 (128, 64) 16

[515, 677] 8 (256, 128) 12
[5537, 6131] 11 (256, 128) 14

[75063, 56711] 14 (256, 128) 16

11P. Stahl, J. B. Anderson, and R. Johannesson, “Optimal and near-optimal encoders for short and
moderate-length tail-biting trellises,” IEEE Trans. Inf. Theory, 1999

12R. Johannesson and K. S. Zigangirov, Fundamentals of convolutional coding. John Wiley & Sons, 2015
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Tail-Biting Convolutional Codes
Observations

� Close to optimal at short block lengths (k ≤ 100 bits)

� Efficient decoding via wrap around Viterbi algorithm (incomplete decoding
algorithm)

� For a fixed memory, performance does not improve with the block length
� Shall be employed only at the lowest part of the block length spectrum
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Near Maximum Likelihood Decoding of Linear Block Codes
Ordered Statistics Decoding15

� Idea: Use channel reliability measures to build a good subset of C (list)
� Apply a maximum likelihood search within the list only

� Can be applied to any linear block code (no specific structure required)

◦ No need to sacrifice minimum distance for structure

� Several enhancements during the past decade (see e.g. 1314)

13A. Valembois and M. Fossorier, “Box and match techniques applied to soft-decision decoding,” IEEE
Trans. Inf. Theory, 2004

14Y. Wu and C. Hadjicostis, “Soft-decision decoding using ordered recodings on the most reliable basis,”
IEEE Trans. Inf. Theory, 2007

15M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,” IEEE
Trans. Inf. Theory, 1995
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Ordered Statistics Decoding

Consider a (n, k) binary linear block code with k × n generator matrix G

Encoder
Channel
p(y|x)

u

u1 u2... uk

x

x1 x2... xn

y

y1 y2... yn

Over the binary input AWGN channel

yi = xi + ni
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Ordered Statistics Decoding (1/3)

� Sort y in decreasing order of reliability

y′ = π (y) with |y′1| ≥ |y′2| ≥ . . . ≥ |y′n|

� Permute the columns of G accordingly: G′ = π (G)
� Assume next that the first k columns of G′ are linearly independent

(information set)

Put G′ in systematic form by row operations only

Gsys = (I|P)

� Take a bit-by-bit hard decision u′ on the first k elements of y′
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Ordered Statistics Decoding (2/3)

� Produce the all the k-bit error vectors with Hamming weight ≤ t
(t is the order of the OSD)

weight− 0 e0+k(k−1)/2 = (0, 0, 0, . . . , 0, 0)

weight− 1


e1 = (1, 0, 0, . . . , 0, 0)
e2 = (0, 1, 0, . . . , 0, 0)

. . .
ek+k(k−1)/2 = (0, 0, 0, . . . , 0, 1)

weight− 2


ek+1 = (1, 1, 0, . . . , 0, 0)
ek+2 = (1, 0, 1, . . . , 0, 0)

. . .
ek+k(k−1)/2 = (0, 0, 0, . . . , 1, 1)

. . .
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Ordered Statistics Decoding (3/3)

� Test error patterns list E , size |E| =
t∑
`=0

(
k

`

)
� Build a list of L =

{
x′0 x′1 . . .x′|E|−1

}
of |E| codewords by

u′0 = u′ + e0

u′1 = u′ + e1

u′2 = u′ + e2

. . .

u′|E|−1 = u′ + e|E|−1

� Perform a maximum likelihood search in the list L

x̂′ = arg max
x′∈L

p(y′|x′) → x̂ = π−1 (x̂′)
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Ordered Statistics Decoding
Example

� (6, 3) shortened Hamming code

G =

( 1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

)
� Channel output y = (+0.2, +1.2, −0.2, +0.6, −0.1, +1.0)
� Ordered observation y′ = (y2, y6, y4, y1, y3, y5)
� Permuted generator matrix

G′ =

( 0 0 1 1 0 1
1 1 1 0 0 0
0 1 0 0 1 1

)
→ Gsys =

( 1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

)
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Ordered Statistics Decoding
Example

� We select the OSD parameter t = 1

e0 = (0, 0, 0) e2 = (0, 1, 0)
e1 = (1, 0, 0) e3 = (0, 0, 1)

� Given the hard decision u′ = (0, 0, 0) on y′

u′0 = (0, 0, 0) → c′0 = (0, 0, 0, 0, 0, 0) →x′0 = (+1, +1, +1, +1, +1, +1)
u′1 = (1, 0, 0) → c′1 = (1, 0, 0, 1, 1, 0) →x′1 = (−1, +1, +1, −1, −1, +1)
u′2 = (0, 1, 0) → c′2 = (0, 1, 0, 0, 1, 1) →x′2 = (+1, −1, +1, +1, −1, −1)
u′3 = (0, 0, 1) → c′3 = (0, 0, 1, 1, 0, 1) →x′3 = (+1, +1, −1, −1, +1, −1)

� Check that x̂′ = x′0 which leads to ĉ = (0, 0, 0, 0, 0, 0)
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Ordered Statistics Decoding
Complexity

� Is proportional to the list size

|L| =
t∑
`=0

(
k

`

)
� The list size explodes quickly with t
� Example: (128, 64) code

t = 1 : |L| = 65
t = 2 : |L| = 2081
t = 3 : |L| = 43745
t = 4 : |L| = 679121
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Ordered Statistics Decoding
Complexity

� The performance approaches the one of a maximum likelihood decoder
with sufficiently large t

� The longer the code, the higher t needs to be to get close to maximum
likelihood decoding

◦ (24, 12) Golay code: t = 2
◦ (128, 64) extended BCH code: t = 4
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Ordered Statistics Decoding
Complexity

� For a given t, early stopping can be used to avoid testing all the

|L| =
t∑
`=0

(
k

`

)
candidates

� Define a threshold d > 0
� While building the list, if one finds a codeword x′ s.t. ‖y− x′‖ < d then

decoding stops and x̂′ = x′

� The threshold is typically related to the code minimum distance
� At high signal-to-noise ratios, the number of tested codewords drops by

(several) orders of magnitude
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Ordered Statistics Decoding

� OSD can be applied to any code: Also to turbo-like codes!

� First decoding attempt: Iterative
� Then, OSD only if iterative decoding fails

Hybrid iterative-OSD16

16M. P. C. Fossorier, “Iterative reliability-based decoding of low-density parity check codes,” IEEE J. Sel.
Areas Commun., 2001
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Ordered Statistics Decoding
Observations

� Very promising in the short block length regime

� Complexity does not scale yet favorably with n (especially due to the need
of increasing the OSD order), but
...research is on-going on the topic, and several enhancements can be used
to extend the (block length) range of interest
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Parallel Concatenated Convolutional Codes

� Turbo codes with 16-states component codes provide the excellent
trade-off between minimum distance and decoding threshold1718

� Tail-biting component codes reduce termination overhead1920

� Interleaver design is crucial

FB/FFW Polynomial (Octal) (Eb/N0)?, R = 1/2 Notes
27/37 0.56 dB 16-states
23/35 0.62 dB 16-states
15/13 0.70 dB 8-states

17C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding:
Turbo-codes,” in Proc. ICC, 1993

18H. El-Gamal and J. Hammons, AR., “Analyzing the turbo decoder using the gaussian approximation,”
IEEE Trans. Inf. Theory, 2001

19C. Weiss, C. Bettstetter, and S. Riedel, “Code construction and decoding of parallel concatenated tail-
biting codes,” IEEE Trans. Inf. Theory, 2001

20T. Jerkovits and B. Matuz, “Turbo code design for short blocks,” in Proc. 7th Advanced Satellite Mobile
Systems Conference, 2016
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Parallel Concatenated Convolutional Codes
Factor Graph

Turbo codes factor graphs21 are characterized by large girth

⇧

21N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Linköping University, 1996
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Parallel Concatenated Convolutional Codes
Interleavers

� The interleaver is the main responsible for large girth and spread
(essential for large dmin)

� Yet, dmin = O(logn)
� Among the best-known constructions

◦ Dithered-Relative-Prime (DRP)22

◦ Quadratic permutation polynomial (QPP) - LTE 23

22S. Crozier and P. Guinand, “High-performance low-memory interleaver banks for turbo-codes,” in Proc.
IEEE VTC, 2001

23O. Takeshita, “On maximum contention-free interleavers and permutation polynomials over integer rings,”
IEEE Trans. Inf. Theory, 2006
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(128, 64) TC LTE 8-states, 10 it.
(128, 64) TC TB 16-states, 10 it.
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(512, 256) TC TB 16-states, 10 it.
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Turbo Codes
Observations

� Performance within 0.5 dB from RCB at moderate error rates

� Decoding can be partially parallelized
� 16-states tail-biting component codes: Good compromise between

decoding complexity and performance
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Low-Density Parity-Check Codes
Graphical Representation of the Parity-Check Matrix

� Low-density24 H matrix imposing a set of n− k constraints
� Graphical representation via Tanner graphs25

◦ Codeword bits ≡ variable nodes (VNs)
◦ Check equations ≡ check nodes (CNs)

H =

( 1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

)

V1 V2 V3 V4 V5 V6

C1 C2 C3

check nodes

variable nodes

24R. Gallager, Low-density parity-check codes, 1963
25M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, 1981
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Low-Density Parity-Check Codes
Graphical Representation of the Parity-Check Matrix

� Graphical representation via Tanner graphs (cont’d)

V1 V2 V3 V4 V5 V6

C1 C2 C3

check nodes

variable nodes

degree= 2

length�6 cycle
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Low-Density Parity-Check Codes
Regular LDPC Codes Ensemble

� The C n
(dv,dc) regular unstructured LDPC ensemble is the set of binary

linear block codes defined by a Tanner graph with

◦ n variable nodes, having degree dv

◦ ndv/dc check nodes with degree dc

◦ Edge permutation picked uniformly at random
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Low-Density Parity-Check Codes
Irregular LDPC Codes Ensemble

� An irregular LDPC code graph is often characterized by the distributions
of degrees of variable and check nodes

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

C1 C2 C3 C4 C5

degree-4

degree-5
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Low-Density Parity-Check Codes
Irregular LDPC Codes Ensemble

� An irregular LDPC code graph is often characterized by the distributions
of degrees of variable and check nodes

� The node-oriented variable node degree distribution is denoted by
Λ = {Λi}, where Λi is the fraction of VNs with degree i

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

C1 C2 C3 C4 C5

degree-4

degree-5
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Low-Density Parity-Check Codes
Irregular LDPC Codes Ensemble

� An irregular LDPC code graph is often characterized by the distributions
of degrees of variable and check nodes

� The node-oriented check node degree distribution is denoted by
P = {Pj}, where Pj is the fraction of CNs with degree j

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

C1 C2 C3 C4 C5

degree-4

degree-5
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Low-Density Parity-Check Codes
Irregular LDPC Codes Ensemble

� The edge-oriented variable node degree distribution is denoted by
λ = {λi}, where λi is the fraction of edges connected to VNs with degree
i

� The edge-oriented check node degree distribution is denoted by ρ = {ρj},
where ρj is the fraction of edges connected to CNs with degree j

λi = iΛi∑
l
lΛl

ρi = iPi∑
l
lPl

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

C1 C2 C3 C4 C5

degree-4

degree-5
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Low-Density Parity-Check Codes
Irregular LDPC Codes Ensemble

� Degree distributions are often given in polynomial form

Λ(x) =
∑
i

Λixi and P(x) =
∑
j

Pjxj

λ(x) =
∑
i

λix
i−1 and ρ(x) =

∑
j

ρjx
j−1

� We have that

λ(x) = Λ′(x)
Λ′(1) and ρ(x) = P′(x)

P′(1)

with
Λ′(x) = dΛ(x)

dx and P′(x) = dP(x)
dx .
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Low-Density Parity-Check Codes
Irregular LDPC Codes Ensemble

� The C n
(Λ,P) irregular unstructured LDPC ensemble is the set of binary

linear block codes defined by a Tanner graph with
◦ n variable nodes whose degrees are distributed according to Λ
◦ m check nodes with degrees are according to P
◦ Edge permutation picked uniformly at random

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

C1 C2 C3 C4 C5

degree-4

degree-5
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LDPC Codes: Unstructured vs. Structured Ensembles
Basics

� Unstructured graphs are easy to analyze, but
◦ Are difficult to implement in actual (hardware) decoders
◦ Allow limited control on edge connectivity properties

� A refined definition leads to structured LDPC ensembles
◦ Repeat-Accumulate-like Codes26
◦ Protograph Codes27
◦ Multi-Edge-Type Codes28

26H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate codes,” in Proc. IEEE Int. Symp.
Turbo Codes and Related Topics, 2000

27J. Thorpe, “Low-density parity-check (LDPC) codes constructed from protographs,” IPN Progress Report,
2003

28T. Richardson and R. Urbanke, “Multi-edge type LDPC codes,” 2004, unpublished
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LDPC Codes: Structured Ensembles

H =

H = Unstructured LDPC Code

Structured LDPC Code



Page 61/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

LDPC Codes: Structured Ensembles
Protograph Codes

� Protograph: small Tanner graph used as template to build the code graph
� Equivalent representation: base matrix

Type-1 VN Type-2 VN Type-3 VN

Type-1 CN Type-2 CN

B =

✓
2 1 0
1 1 1

◆
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LDPC Codes: Structured Ensembles
Protograph Codes

� A protograph can be used to construct a larger Tanner graph by a copy &
permute procedure

� The larger Tanner graph defines the code

� First step: Protograph is copied Q times

Type-1 VNs Type-2 VNs Type-3 VNs

Type-1 CNs Type-2 CNs

B0 =

0
BBBBBBBBBB@

2 0 0 0 1 0 0 0 0 0 0 0
0 2 0 0 0 1 0 0 0 0 0 0
0 0 2 0 0 0 1 0 0 0 0 0
0 0 0 2 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

1
CCCCCCCCCCA
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LDPC Codes: Structured Ensembles
Protograph Codes

� Second step: Permute edges among the replicas
� Permutations shall avoid parallel edges

Type-1 VNs Type-2 VNs Type-3 VNs

Type-1 CNs Type-2 CNs

H =

0
BBBBBBBBBB@

1 1 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1

1
CCCCCCCCCCA
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LDPC Codes: Structured Ensembles
Protograph Codes

� Second step: Permute edges among the replicas
� Permutations shall avoid parallel edges

⇧1,1 ⇧1,2 ⇧2,1 ⇧2,2 ⇧2,3

Type-1 VNs Type-2 VNs Type-3 VNs

Type-1 CNs Type-2 CNs

H =

0
BBBBBBBBBB@

1 1 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1

1
CCCCCCCCCCA

� A protograph defines structured LDPC code ensemble: The iterative
decoding threshold and distance properties follow from the protograph
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LDPC Codes: Structured Ensembles
Protograph Codes

� Second step: Permute edges among the replicas
� Permutations shall avoid parallel edges

⇧1,1 ⇧1,2 ⇧2,1 ⇧2,2 ⇧2,3

Type-1 VNs Type-2 VNs Type-3 VNs

Type-1 CNs Type-2 CNs

H =

0
BBBBBBBBBB@

1 1 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1

1
CCCCCCCCCCA

� A protograph defines structured LDPC code ensemble: The iterative
decoding threshold and distance properties follow from the protograph
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LDPC Codes: Structured Ensembles
Protograph Codes

� Depending on code length, the expansion can be done in more steps
� In each step, girth optimization techniques29 are used
� The final expansion is usually performed by means of circulant

permutation matrices (quasi-cyclic code)30

Type-1 VNs Type-2 VNs Type-3 VNs

Type-1 CNs Type-2 CNs

H =

0
BBBBBBBBBB@

1 1 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1

1
CCCCCCCCCCA

29X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular progressive edge-growth Tanner graphs,”
IEEE Trans. Inf. Theory, 2005

30W. Ryan and S. Lin, Channel codes – Classical and modern. Cambridge Univ. Press, 2009



Page 65/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

LDPC Codes: Structured Ensembles
Protograph Codes

� Depending on code length, the expansion can be done in more steps
� In each step, girth optimization techniques29 are used
� The final expansion is usually performed by means of circulant

permutation matrices (quasi-cyclic code)30

Type-1 VNs Type-2 VNs Type-3 VNs

Type-1 CNs Type-2 CNs

H =




1 1 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1




29X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular progressive edge-growth Tanner graphs,”
IEEE Trans. Inf. Theory, 2005

30W. Ryan and S. Lin, Channel codes – Classical and modern. Cambridge Univ. Press, 2009
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LDPC Codes: Structured Ensembles
Protograph Codes

� Punctured (state) and degree-1 variable nodes are allowed
� Near-capacity thresholds can be achieved with lower average degrees than

unstructured LDPC codes → larger girth
� Example: Accumulate-Repeat-3-Accumlate (AR3A), R = 1/2,

(Eb/N0)? = 0.475 dB, only 0.3 dB from Shannon limit

Punctured VN
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LDPC Codes: Structured Ensembles
Protograph Codes

� Allow controlling in finer way the edge connectivity31

� Example: consider the based matrices

B1 =

(
1 2 1 1 0
2 1 1 1 0
1 2 0 0 1

)
B2 =

(
1 3 1 0 0
2 1 1 1 0
1 1 0 1 1

)
They describe sub-ensembles of the unstructured ensemble defined by

Λ(x) = 0.2x+ 0.4x2 + 0.2x4 + 0.2x5, P (x) = 0.333x4 + 0.667x5

with degree-5 VNs punctured
However, (Eb/N0)?1 = 0.475 dB while (Eb/N0)?2 = +∞ dB

31G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT analysis,” in Proc. IEEE Global
Telecommun. Conf., 2007
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Protograph Ensembles: Accumulator-based
Repeat-Accumulate

� Accumulator-based LDPC codes admit simple protograph representation
� Very low decoding thresholds with low average degrees → large girth
� Repeat-accumulate (RA) codes32

Repetition-3

(Tail-biting)
Accumulator

Information bits

Parity bits

32D. Divsalar, S. Dolinar, J. Thorpe, and C. Jones, “Constructing LDPC codes from simple loop-free
encoding modules,” in Proc. IEEE Int. Conf. Commun. (ICC), 2005
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Protograph Ensembles: Accumulator-based
Example: AR3A Protograph

Accumulate-Repeat-3-Accumulate (AR3A) Protograph33

Punctured VN

dmin (Eb/N0)? Encoding
O(logn) 0.475 dB O(n)

33D. Divsalar, S. Dolinar, C. Jones, and K. Andrews, “Capacity-approaching protograph codes,” IEEE JSAC,
2009
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Protograph Ensembles: Accumulator-based
AR3A Protograph Thresholds

R (Eb/N0)? Shannon Limit
7/8 3.139 dB 2.845 dB
4/5 2.283 dB 2.040 dB
3/4 1.845 dB 1.626 dB
2/3 1.295 dB 1.059 dB
1/2 0.475 dB 0.187 dB
1/3 −0.050 dB −0.495 dB
1/4 −0.554 dB −0.794 dB
1/5 −0.755 dB −0.964 dB
1/6 −0.791 dB −1.073 dB
1/8 −0.962 dB −1.204 dB
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(512, 256) RCB
(512, 256) SPB59
(512, 256) NA
(512, 256) ARA
(512, 256) Binary LDPC (CCSDS)
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Protograph Ensembles: Raptor-like

� Serial concatenation of a high-rate protograph-based outer LDPC code,
and a protograph-based LT code34

B =
(

Bo 0
BLT

)

� Although the construction targets short block lengths, the outer code
parity-check matrix density prevents from obtaining large girths at very
short block lengths

34T.-Y. Chen, K. Vakilinia, D. Divsalar, and R. D. Wesel, “Protograph-based raptor-like LDPC codes,”
2014. [Online]. Available: http://arxiv.org/abs/1403.2111

http://arxiv.org/abs/1403.2111
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Protograph Ensembles: Raptor-like

� Serial concatenation of a high-rate protograph-based outer LDPC code,
and a protograph-based LT code34

B =
(

Bo 0
BLT

)
� Although the construction targets short block lengths, the outer code

parity-check matrix density prevents from obtaining large girths at very
short block lengths

34T.-Y. Chen, K. Vakilinia, D. Divsalar, and R. D. Wesel, “Protograph-based raptor-like LDPC codes,”
2014. [Online]. Available: http://arxiv.org/abs/1403.2111

http://arxiv.org/abs/1403.2111
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Protograph Ensembles: Raptor-like

Large flexibility of rates, with thresholds within 0.5 dB from the Shannon limit

B =

0
BBBBBBBBBBBBBBBBBBBB@

2 1 2 1 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0
1 2 1 2 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCA
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Protograph Ensembles: Raptor-like

Large flexibility of rates, with thresholds within 0.5 dB from the Shannon limit

R (Eb/N0)? Shannon Limit
6/7 3.077 dB 2.625 dB
6/8 1.956 dB 1.626 dB
6/9 1.392 dB 1.059 dB

6/10 1.078 dB 0.679 dB
6/11 0.798 dB 0.401 dB
6/12 0.484 dB 0.187 dB
6/13 0.338 dB 0.018 dB
6/14 0.144 dB −0.122 dB
6/15 0.072 dB −0.238 dB
6/16 0.030 dB −0.337 dB
6/17 −0.024 dB −0.422 dB
6/18 −0.150 dB −0.495 dB
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Protograph Ensembles: Raptor-like

� 5G proposal (enhanced mobile broadband) by Qualcomm: Raptor-like
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Protograph Ensembles: Raptor-like

� 5G proposal (enhanced mobile broadband) by Qualcomm: Raptor-like
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(512, 256) RCB
(512, 256) SPB59
(512, 256) NA
(512, 256) ARA
(512, 256) Binary LDPC (CCSDS)
(512, 256) Binary LDPC (5G)
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Binary Low-Density Parity-Check Codes
Observations

� Performance within 1 dB from RCB at short block lengths

� Protograph construction fundamental to achieve good performance with
practical decoders

� Depending on the code design, strong error detection capability
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Non-Binary LDPC Codes
Basics

� Defined35 by M ×N sparse parity-check matrix H via the equation

cHT = 0

where c ∈ Fnq and the elements of H belong to Fq, q > 2
� We are mainly interested in q = 2p

� Example: parity-check matrix over F16

H =
[
α3 α7 α3 0
α0 0 α12 α11

]

35M. Davey and D. MacKay, “Low density parity check codes over GF(q),” IEEE Commun. Lett., 1998
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Non-Binary LDPC Codes
Basics

� Codeword symbols ≡ variable nodes (VNs)
� Non-Binary Check equations ≡ check nodes (CNs)

H =

(
α2 α0 0 α7 0 0
α5 0 α11 0 α0 0
0 α2 α3 0 0 α10

)

V1 V2 V3 V4 V5 V6

C1 C2 C3

check nodes

variable nodes
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Non-Binary LDPC Codes
Basics

� Binary image of the code: in the codeword, replace each symbol in Fq
with its length-p, p = log2 q, binary representation

� Next, we will always refer to the binary block length n = Np bits
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Non-Binary LDPC Codes
Belief Propagation Decoding

� Messages are vectors of q probabilities
� Convolution of messages at the check nodes
� Decoding complexity scales as quadratically in q
� It can be reduced to O(q log2 q) by performing the CN operation via fast

Fourier transform36

36L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(2q),” in Proc. IEEE Inf.
Theory Workshop (ITW), 2003
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Non-Binary LDPC Codes
Ultra-Sparse Ensembles: Cycle LDPC Codes

� Non-Binary LDPC codes constructed on relatively-large fields (q ≥ 64)
perform particularly well when the graph is ultra-sparse37

� Constant variable node degree dv = 2, uniform check node degree
� Ultra-sparse LDPC Codes are actually instances of cycle codes38

C1 C2 C3 C4

C1

C2 C3

C4

Tanner graph perspective Cycle (circuit) code perspective

girth ÷2

girth ⇥2

37C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, dc)-LDPC codes over GF(q) using
their binary images,” IEEE Trans. Commun., 2008

38S. Hakimi and J. Bredeson, “Graph theoretic error-correcting codes,” IEEE Trans. Inf. Theory, 1968
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Cycle LDPC Codes
Distance Properties

� Cycle code ensemble: dmin = O(logn)
� Beyond girth optimization, the minimum distance of the binary image of

the code can be kept sufficiently large by a proper choice of the
parity-check matrix coefficients

� Choosing the coefficients in a parity-check matrix which optimizes the
minimum distance of the binary image of the code is a formidable task...
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Cycle LDPC Codes
Coefficient Optimization

� Less complex (sub-optimum): optimize the coefficients row-wise39

� Example: Parity-check matrix over F256, p(x) = x8 + x4 + x3 + x2 + 1

H =
[
α8 α80 α0 0
α0 α41 α122 α113

]
The first row imposes the equation c1α

8 + c2α
80 + c3α

0 = 0, i.e.

[c1, c2, c3] hT1 = 0 h1 =
[
α8, α80, α0]

(non-binary SPC code)

39C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, dc)-LDPC codes over GF(q) using
their binary images,” IEEE Trans. Commun., 2008
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Cycle LDPC Codes
Coefficient Optimization

� Let us analyze the binary code associated with the non-binary SPC code
with parity-check matrix hT1 =

[
α8, α80, α0]

� Companion matrix of p(x) =
∑8

i=0 pix
i = x8 + x4 + x3 + x2 + 1

M =


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

p0 p1 p2 p3 p4 p5 p6 p7


� Denote by c1 the 8-bits representation of the symbol c1, and by s1 the

8-bits binary image of s1 = c1α
i. Then
s1 = c1Mi
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Cycle LDPC Codes
Coefficient Optimization

� The binary code associated with the non-binary SPC code having
hT1 =

[
α8, α80, α0] has parity-check matrix given by

Hb
r =

[
M8|M80|I

]
� This is the parity-check matrix of a (24, 16) binary linear block code
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Cycle LDPC Codes
Coefficient Optimization

� Distance spectrum of the code with parity-check matrix given by

Hb
r =

[
M8|M80|I

]
via MacWilliams identity40

A(x) = 1
2n−k (1 + x)nB

(1− x
1 + x

)
where A(x) is the WEF we are interested in, and B(x) is the one of the
dual code (having Hb

r as generator matrix)

40J. MacWilliams and N. Sloane, The theory of error-correcting codes. North Holland Mathematical Libray,
1977
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Cycle LDPC Codes
Coefficient Optimization

� Distance spectrum of the code with parity-check matrix given by

Hb
r =

[
M8|M80|I

]

A(x) = 1 + 40x4 + 202x5 + 502x6 + 1307x7 + 2980x8 + 5082x9 + 7486x10+
+ 9854x11 + 10698x12 + 9686x13 + 7618x14 + 5076x15 + 2875x16+
+ 1406x17 + 522x18 + 146x19 + 46x20 + 8x21 + x23
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Cycle LDPC Codes
Coefficient Optimization

List of good row coefficients, F256, check node degree 3

Coefficients,
[
αi αj α0] Minimum Distance Multiplicity[

α8 α183 α0] 4 36[
α10 α82 α0] 4 37[
α16 α167 α0] 4 37[
α41 α127 α0] 4 37[
α41 α128 α0] 4 37[
α42 α128 α0] 4 37[
α86 α214 α0] 4 37
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Non-Binary Turbo Codes
Basics

� Turbo codes on high-order fields41 as LDPC codes42
� Memory-1 (in field symbols), time-variant convolutional codes

LIVA ET AL.: SHORT TURBO CODES OVER HIGH ORDER FIELDS 23
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ui
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u

p(1)

p(2)
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f (1)

g(2)
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a) PCCC encoder structure

D
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Π

Fig. 2. Structure of the encoder for a memory-1 time-variant PCCC (a) and of the component code RSC encoder (b).

July 26, 2012 DRAFT
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Turbo encoder Detail of the RSCC encoder

41J. Berkmann, Iterative Decoding of Nonbinary Codes. Munich, Germany: Ph.D. dissertation, Tech. Univ.
München, 2000

42G. Liva, E. Paolini, B. Matuz, S. Scalise, and M. Chiani, “Short turbo codes over high order fields,” IEEE
Trans. Commun., 2013



Page 94/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

Turbo Codes based on Memory-1 Time-Variant RCCs
Decoding

� Decoding over the q-states trellis of the component codes
� q branches leaving/entering a state in each section
� Decoding complexity scales as O(q2)
� Can be reduced to O(q log2 q) by decoding through fast Fourier

transform432

C1 ⇡ C2 BPSK

(n1, k1) binary
SPC code

(n2, k2) binary
linear code

antipodal
modulation

Cq M

(n1, k1) SPC
code over Fq

sequence
modulator

c 2 Cq x 2 X n1

Fig. 1. Relation between the conventional product code encoder perspective
and the the coded modulation one.

III. EFFICIENT ML DECODING OF PRODUCT CODES

For the product code class introduced in Section II ef-
ficient (block-wise) ML decoding can be implemented by
introducing a compact trellis representation of the code [2].
In the following, we revisit the approach of [2] from a coded
modulation perspective. The vectors mT

1 ,mT
2 , . . . ,mT

n1
can be

regarded as the binary vector representations of the elements
of a finite field Fq of order q “ 2k2 . We denote the elements
corresponding to mT

1 ,mT
2 , . . . ,mT

n1
by µ1, µ2, . . . , µn1

. Thus,
(2) can be written as

n1ÿ

i“1

µi “ 0 (3)

which defines the parity-check equation of an pn1, n1 ´ 1q

SPC code Cq over Fq with parity-check matrix

H “ r1 1 . . . 1s . (4)

We denote by µ “ rµ1 µ2 . . . µn1
s the n1-symbols codeword.

The symbols are then mapped onto a constellation X , which
is composed of q real-valued vectors equal to the q “ 2k2

BPSK-modulated codewords of C2. The mapping (modulation)
function is M : Fq fiÑ X and it is constrained by the product
code construction, being the real-valued vector associated with
a generic symbol µi given by the BPSK-modulated binary
vector ci “ miG2. The relation between the conventional
product code encoder perspective and the coded modulation
one is summarised in Figure 1. The code Cq can be decoded
efficiently over its trellis, which comprises q states and where
(apart from the terminations) each state is section i ´ 1 is
connected through q branches to the states in section i. An
example of a trellis section for a SPC code over F4 is depicted
in Figure 2, in which ↵ is a primitive element of F4. We denote
by Si the trellis state at time i. The label associated with the
trellis edge connecting the state s at time i ´ 1 to the state s1

at time i is given by s ` s1, with s, s1
P Fq .

The Viterbi algorithm is then applied over the trellis, with
the branch (transition) metrics given by xxi,yiy , @xi P X . For
each trellis section and at each node q, accumulated metrics
need to be computed and compared, resulting in q2 operations.
Neglecting the terminations, the overall complexity is thus
proportional to k1q

2
“ k12

2k2 as in (1).

0

1

↵2

0

1

↵2

Si�1 Si

0

1

↵

↵2

↵ ↵

Fig. 2. Example of a trellis section for a non-binary SPC code with parity-
check matrix in the form (4).

IV. SYMBOL-WISE MAP DECODING

In this section, we turn the decoding problem into a symbol-
wise MAP decoding for the class of product codes introduced
in Section II. The modification ensures complexity savings
with respect to (1). The proposed algorithm is optimum in
the sense of maximizing the a posteriori probability for each
symbol given the observation y, i.e.,

µ̂i “ arg max
!PFq

Pr tµi “ !|yu .

Note that the main contribution here lies in the change
of perspective in the decoding algorithm (i.e., from ML to
symbol-wise MAP). Though, the change of perspective allows
employing efficient MAP decoding for non-binary codes [8]
as instantiated next for the case on non-binary SPC codes.

The a posteriori probability mass function (p.m.f.) vector
for the symbol µi given the channel output y is denoted
by Li “ rLip0q, Lip1q, Lip↵q, . . . , Li

`
↵q´2

˘
s with Lir!s “

Prtµi “ !|yu, ! P Fq . We further introduce the notation
yri:js “ pyi,yi`1, . . . ,yjq, 1 § i † j § n1. The a posteriori
probability for symbol µi is

Lip!q “ Prtµi “ !|yu “

ÿ

s,s1“s`!

'i´1psq�ips, s
1
q�ips

1
q.

'i´1psq denotes the forward metric for the state s at time i´1,
�ips

1
q is the backward metric for the state s1 at time i, and

�ips, s
1
q is the transition metric between states s, s1 at time i.

We normalize the metrics such that

'ipsq “ PrtSi “ s|yr1:isu, '1p0q “ 1,

�ipsq “ PrtSi “ s|yri`1:n1su, �n1
p0q “ 1,

�ips, s
1
q “ PrtSi´1 “ s, Si “ s1

|yiu. (5)

Defining s1
“ s`!, we have that the branch transition metric

can be computed as

�ips, s
1
q “ Prtµi “ !|yiu 9 ppyi|µi “ !q

“

`
2⇡�2

˘´n2{2
exp

ˆ
´

1

2�2
xyi, Mp!qy

˙
. (6)

Since (6) involves a correlation between length-n2 vectors,
and since it has to be computed for each ! P Fq with
q “ 2k2 , the complexity of the branch metrics calculation

43J. Berkmann and C. Weiss, “On dualizing trellis-based APP decoding algorithms,” IEEE Trans. Commun.,
2002
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Non-Binary Turbo Codes
Memory-1 Time-Variant Recursive Convolutional Codes

� The codes admit a non-binary protograph LDPC code representation

22 SUBMITTED TO IEEE TRANSACTIONS ON COMMUNICATIONS

a) Parallel concatenation

b) Serial concatenation

C0

C1

C1 C0

V0

V0

V1

V2

V2 V1

✐

✙

accumulators on Fq

❄❄

differentiator on Fq

Fig. 1. Protograph representation of a parallel (a) and serial (b) concatenation.

DRAFT July 26, 2012

� Decoding threshold as for cycle LDPC codes: F256 R = 1/3 protograph
ensemble possesses (Eb/N0)? = −0.214 dB vs. (Eb/N0)? = −0.225 dB of
the unstructured one
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Turbo Codes based on Memory-1 Time-Variant RCCs
Interleaver Design and Graph Interpretation

� For binary turbo codes, a large-spread regular interleaver is not an option,
due to the large multiplicity of minimum-weight codewords

� The interleaver shall sacrifice spread for irregularity (randomness)
� For non-binary turbo codes, the component codes do not have anymore a

periodic trellis (time-variant FB/FFW coefficients), thus large-spread
regular interleavers can be used44

44C. Radebaugh, C. Powell, and R. Koetter, “Wheel codes: Turbo-like codes on graphs of small order,” in
Proc. IEEE Inf. Theory Workshop (ITW), 2003
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Turbo Codes based on Memory-1 Time-Variant RCCs
Interleaver Design and Graph Interpretation

� Non-binary turbo codes can be defined by the graph of a cycle code
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Interleaver Design and Graph Interpretation

� Non-binary turbo codes can be defined by the graph of a cycle code

C8

C7

C9

C6

C0

C5

C1

C4

C2

C3 C3

C4

C2

C0

C1

Petersen Graph (Cage)

Tail-biting trellis (1st component code)

Tail-biting trellis (2nd component code)

Information bits



Page 98/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

1 2 3 4 510−4

10−3

10−2

10−1

100

Eb/N0, dB

Bl
oc
k
Er
ro
r
Ra

te

(128, 64) RCB
(128, 64) SPB59
(128, 64) NA
(128, 64) LDPC F256
(128, 64) Turbo F256



Page 99/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

Non-Binary Low-Density Parity-Check Codes
Observations

� Remarkably close to the RCB

� Ultra-sparse design is nearly-optimal with large field orders
� Low error floors
� High decoding complexity
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Polar Codes
Introduction

� Class of provably capacity achieving codes over memoryless binary input
output symmetric channels under low-complexity (successive cancellation)
decoding45

� Their performance at short block lengths is disappointing but...

list decoding with the aid of an outer-high rate code46 yields one of the
best code constructions at short block lengths!

45E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric
binary-input memoryless channels,” IEEE Trans. Inf. Theory, 2009

46I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory, 2015
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Polar Codes

p(y|x)

p(y|x)

⊕v1

v2

x1

x2

y1

y2

x = vG2 G2 =
(

1 0
1 1

)
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Polar Codes

Denote u = (u1, u2, . . . , un) and x = (x1, x2, . . . , xn). Then

x = uGn

with Gn being a n× n matrix with structure

Gn = G2 ⊗G2 ⊗ . . .⊗G2
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Polar Codes
Example

With n = 8, G8 = G2 ⊗G2 ⊗G2

G8 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


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Polar Codes
Example

p(y|x) y1

p(y|x) y2

p(y|x) y3

p(y|x) y4

p(y|x) y5

p(y|x) y6

p(y|x) y7

p(y|x) y8

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

u1
x1

u2
x2

u3
x3

u4
x4

u5
x5

u6
x6

u7
x7

u8
x8
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Polar Codes
Successive Cancellation Decoding

p(y|x)

p(y|x)

⊕v1

v2

x1

x2

y1

y2

⊕v1

?

x1

x2

y1

y2

⊕v1

v2

x1

x2

y1

y2

�

©

L′1

?

L1

L2

y1

y2

�

©

v1

L′2

L1

L2

y1

y2
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Polar Codes
Successive Cancellation Decoding

p(y|x)

p(y|x)

⊕v1

v2

x1

x2

y1

y2

⊕v1

?

x1

x2

y1

y2

⊕v1

v2

x1

x2

y1

y2

�

©

L′1

?

L1

L2

y1

y2

�

©

v1

L′2

L1

L2

y1

y2

p(y|v) = p(y1|v1 + v2)p(y2|v2)
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Polar Codes
Successive Cancellation Decoding

p(y|x)

p(y|x)

⊕v1

v2

x1

x2

y1

y2

⊕v1

?

x1

x2

y1

y2

⊕v1

v2

x1

x2

y1

y2

�

©

L′1

?

L1

L2

y1

y2

�

©

v1

L′2

L1

L2

y1

y2

p(y|v1) =
∑
v2

p(y, v2|v1) = 1
2
∑
v2

p(y1|v1 + v2)p(y2|v2)
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Polar Codes
Successive Cancellation Decoding

p(y|x)

p(y|x)

⊕v1

v2

x1

x2

y1

y2

⊕v1

?

x1

x2

y1

y2

⊕v1

v2

x1

x2

y1

y2

�

©

L′1

?

L1

L2

y1

y2

�

©

v1

L′2

L1

L2

y1

y2

p(y, v1|v2) = p(y|v1, v2)p(v1) = 1
2p(y1|v1 + v2)p(y2|v2)
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Polar Codes
Successive Cancellation Decoding

p(y|x)

p(y|x)

⊕v1

v2

x1

x2

y1

y2

⊕v1

?

x1

x2

y1

y2

⊕v1

v2

x1

x2

y1

y2

�

©

L′1

?

L1

L2

y1

y2

�

©

v1

L′2

L1

L2

y1

y2

L′1 = 2 tanh−1
(

tanh
(
L1

2

)
tanh

(
L2

2

))
with Li = log p(yi|0)

p(yi|1)
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Polar Codes
Successive Cancellation Decoding

p(y|x)

p(y|x)

⊕v1

v2

x1

x2

y1

y2

⊕v1

?

x1

x2

y1

y2

⊕v1

v2

x1

x2

y1

y2

�

©

L′1

?

L1

L2

y1

y2

�

©

v1

L′2

L1

L2

y1

y2

L′2 = L2 + (−1)v1L1
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Polar Codes
Successive Cancellation Decoding

p(y|x) y1

p(y|x) y2

p(y|x) y3

p(y|x) y4

p(y|x) y5

p(y|x) y6

p(y|x) y7

p(y|x) y8

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

u1

u2

u3

u4

u5

u6

u7

u8

û1 = arg max
u1

p(y|u1)

?

?

?

?

?

?

?

û1

û2 = arg max
u2

p(y, û1|u2)

?

?

?

?

?

?

û1

û2

û3 = arg max
u3

p(y, û1, û2|u3)

?

?

?

?

?

û1

û2

û3

û4 = arg max
u4

p(y, û1, . . . , û3|u4)

?

?

?

?

û1

û2

û3

û4

û5 = arg max
u5

p(y, û1, . . . , û4|u5)

?

?

?

û1

û2

û3

û4

û5

û6 = arg max
u6

p(y, û1, . . . , û5|u6)
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û1

û2

û3

û4

û5

û6

û7 = arg max
u7

p(y, û1, . . . , û6|u7)

?

û1

û2

û3

û4

û5

û6

û7

û8 = arg max
u8

p(y, û1, . . . , û7|u8)
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Polar Codes
Successive Cancellation Decoding
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û1

û2

û3

û4
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û7
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Polar Codes
Successive Cancellation Decoding

p(y|x) y1

p(y|x) y2

p(y|x) y3

p(y|x) y4

p(y|x) y5

p(y|x) y6

p(y|x) y7

p(y|x) y8

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

u1

u2

u3

u4

u5

u6

u7

u8
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û1

û2
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û1

û2
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?

û1
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Polar Codes
Successive Cancellation Decoding
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û2 = arg max
u2

p(y, û1|u2)
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û3

û4
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Polar Codes
Successive Cancellation Decoding
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?

?

?

û1
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û7 = arg max
u7
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û8 = arg max
u8
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Polar Codes
Successive Cancellation Decoding
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Polar Codes
Successive Cancellation Decoding
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?

?

?

?

û1
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û2 = arg max
u2

p(y, û1|u2)
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û2

û3
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û5
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û1

û2
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û4

û5
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û6

û7
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p(y, û1|u2)

?

?

?

?

?

?

û1
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û1

û2
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û1

û2
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Polar Codes
Code Design

� (n, k) polar code: A = set of k indexed in {1, 2, . . . , n}
� Map the k information bits on ui, i ∈ A

� Set the remaining elements of u to 0 (frozen bits)
� Selection of the frozen bits: For the target channel, find the least n− k

reliable bits in u under successive cancellation decoding4748

47N. Stolte, “Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung,” Ph.D. dissertation, TU
Darmstadt, 2002

48E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric
binary-input memoryless channels,” IEEE Trans. Inf. Theory, 2009
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Polar Codes
Example

� (8, 4) polar code: A = {4, 6, 7, 8}

G8 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


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Polar Codes
Example

� (8, 4) polar code: A = {4, 6, 7, 8}

G =

 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1



� G: generator matrix of the (8, 4) polar code
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Polar Codes
Example: u1 = u2 = u3 = u5 = 0 (frozen bits)

p(y|x) y1

p(y|x) y2

p(y|x) y3

p(y|x) y4

p(y|x) y5

p(y|x) y6

p(y|x) y7

p(y|x) y8

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

u1 = 0

u2 = 0

u3 = 0

u4 = info

u5 = 0

u6 = info

u7 = info

u8 = info

û1 = 0 (frozen)

?

?

?

?

?

?

?

û1 = 0

û2 = 0 (frozen)

?

?

?

?

?

?

û1 = 0

û2 = 0

û3 = 0 (frozen)

?

?

?

?

?

û1 = 0

û2 = 0

û3 = 0

û4 = arg max
u4

p(y, û1, . . . , û3|u4)

?

?

?

?

û1 = 0

û2 = 0

û3 = 0

û4

û5 = 0 (frozen)

?

?

?

û1 = 0

û2 = 0

û3 = 0

û4

û5 = 0

û6 = arg max
u6

p(y, û1, . . . , û5|u6)

?

?

û1 = 0

û2 = 0

û3 = 0

û4

û5 = 0

û6

û7 = arg max
u7

p(y, û1, . . . , û6|u7)

?

û1 = 0

û2 = 0

û3 = 0

û4

û5 = 0

û6

û7

û8 = arg max
u8

p(y, û1, . . . , û7|u8)
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Polar Codes: Shortcomings

1 2 3 4 510−4

10−3

10−2

10−1

100

Eb/N0, dB

Bl
oc
k
Er
ro
rR

at
e

(128, 64) RCB
(128, 64) SPB59
(128, 64) NA
(128, 64) polar code

Albeit capacity-achieving
(for large n), at
moderate-short block
lengths polar codes under
successive cancellation
decoding perform poorly
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Polar Codes
List Decoding: Principle

� List decoding: Exploit the serial bit decision process to improve the SC
decoder performance
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ûi+3

•0

•1

•0

•1

•0

•1
•0

•1

Rank based on
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List size L = 4
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ûi+3

•0

•1

•0

•1

•0

•1
•0

•1

Rank based on

p (y|û1, . . . , ûi+3)
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ûi+2

•0

•1

•0

•1

•0

•1

•0

•1

Rank based on
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•

•

•

•

•

•
�

�

�
�

�
�

Discard the L/2

least likely paths

List size L = 4



Page 112/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

•

ûi
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ûi

•

0

•

1
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•

•

•

•

•

�

�

�

�
�

Discard the L/2

least likely paths
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Polar Codes
List Decoding: Principle

� After k steps, L codewords in the list L

•x1

•
x2

•x3

•x4

•y

� Pick the codeword in L maximizing the likelihood
x̂ = arg max

x∈L
p (y|x)



Page 113/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

Polar Codes
List Decoding: Principle

� After k steps, L codewords in the list L

•x1

•
x2

•x3

•x4

•y

� Pick the codeword in L maximizing the likelihood
x̂ = arg max

x∈L
p (y|x)



Page 113/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

Polar Codes
List Decoding: Principle

� After k steps, L codewords in the list L

•x1

•
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•x3

•x4

•y

� Pick the codeword in L maximizing the likelihood
x̂ = arg max

x∈L
p (y|x)
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Polar Codes
List Decoding: Principle

� Two error events:

•x1

•
x2

•x3

•

•y

x4

x4

� The correct codeword x is not in the list

� The correct codeword x is in the list but ∃x′ ∈ L s.t. p (y|x′) > p (y|x)

The error would take place even with ML decoding...

Performance limited by distance spectrum
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Polar code L = 1



Page 115/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

1 2 3 4 510−4

10−3

10−2

10−1

100

Eb/N0, dB

Bl
oc
k
Er
ro
r
Ra

te

(128, 64) RCB
(128, 64) SPB59
(128, 64) NA
Polar code L = 1
Polar code L = 4



Page 115/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

1 2 3 4 510−4

10−3

10−2

10−1

100

Eb/N0, dB

Bl
oc
k
Er
ro
r
Ra

te

(128, 64) RCB
(128, 64) SPB59
(128, 64) NA
Polar code L = 1
Polar code L = 4
Polar code L = 8



Page 115/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

1 2 3 4 510−4

10−3

10−2

10−1

100

Eb/N0, dB

Bl
oc
k
Er
ro
r
Ra

te

(128, 64) RCB
(128, 64) SPB59
(128, 64) NA
Polar code L = 1
Polar code L = 4
Polar code L = 8
Polar code L = 16



Page 115/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

1 2 3 4 510−4

10−3

10−2

10−1

100

Eb/N0, dB

Bl
oc
k
Er
ro
r
Ra

te

(128, 64) RCB
(128, 64) SPB59
(128, 64) NA
Polar code L = 1
Polar code L = 4
Polar code L = 8
Polar code L = 16
Polar code L = 32



Page 115/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

1 2 3 4 510−4

10−3

10−2

10−1

100

Eb/N0, dB

Bl
oc
k
Er
ro
r
Ra

te

(128, 64) RCB
(128, 64) SPB59
(128, 64) NA
Polar code L = 1
Polar code L = 4
Polar code L = 8
Polar code L = 16
Polar code L = 32
ML lower bound



Page 116/134 G. Liva and F. Steiner · Codes for Short Blocks · Short Modern Codes March 29, 2017

Polar Codes
List Decoding: Principle

� Concatenation with an outer code to improve distance spectrum

•x1

•
x2

•x3

•x4

•y

•x4

� List decoding (inner code), followed by syndrome check with outer code

� Expurgated list: all codewords not satisfying the check are removed
� Selection within the remaining codewords based on likelihood
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Polar Codes
List Decoding: Principle

� Concatenation with an outer code to improve distance spectrum

•x3

•y

•x4

� List decoding (inner code), followed by syndrome check with outer code
� Expurgated list: all codewords not satisfying the check are removed

� Selection within the remaining codewords based on likelihood
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Polar Codes
List Decoding: Principle

� Concatenation with an outer code to improve distance spectrum

•x3

•y

•x4

� List decoding (inner code), followed by syndrome check with outer code
� Expurgated list: all codewords not satisfying the check are removed
� Selection within the remaining codewords based on likelihood
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(128, 64) polar code
(128, 71) PC + CRC-7, L = 32
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Polar Codes
Observations

� With successive cancellation + list decoding and the aid of an outer code,
consistently close to the normal approximation

� Complexity growing with the list size L
� Large list size: close to maximum-likelihood performance (but large

complexity)
� Error floor behavior only partially addressed49

� Good trade-off between decoding complexity and performance

49G. Ricciutelli, M. Baldi, F. Chiaraluce, and G. Liva, “On the error probability of short concatenated polar
and cyclic codes with interleaving,” arXiv preprint arXiv:1701.07262, 2017
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49G. Ricciutelli, M. Baldi, F. Chiaraluce, and G. Liva, “On the error probability of short concatenated polar
and cyclic codes with interleaving,” arXiv preprint arXiv:1701.07262, 2017
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Case 2: n = 512, k = 256
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Comparing Rate-1/2 Codes at PB = 10−4
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High-Order Modulations: η = 4 [bpcu], n = 512 symbols
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Complexity

� Model from

O. İşcan, D. Lentner, and W. Xu, “A comparison of channel coding
schemes for 5G short message transmission,” in Proc. Globecom, 2016
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Complete vs. Incomplete:
Some Observations on Error Detection

Code Family Decoding Algorithm Complete/Incomplete

TBCC WAVA “Almost” complete

Linear Block OSD Complete

Polar+CRC List “Almost” complete for large lists

LDPCC BP Incomplete

Turbo BP Complete?
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The Channel Estimation Problem

� Decoding algorithms often requires some knowledge of the channel state
� Example: Communication over static fading channel

y = hx + n h ∈ C

� Pragmatic (naive?) approach:

◦ Estimate the channel h first by means of pilot tones (preamble)
◦ Decode assuming the channel

y = ĥx + n

� For long blocks (and slow fading), the cost of channel estimation is
negligible

� At short block lengths, the number of channel uses required to get a good
channel estimate may be comparable with the number of information bits!
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Redundancy vs. Channel Knowledge50

� Problem statement: Transmit k information bits in n channel uses

preamble parity information

n channel uses

m n−m− k k

preamble parity information

little knowlegde of the channel
strong channel code protection

preamble parity informationpreamble parity informationpreamble parity informationpreamble parity information

almost perfect knowlegde of the channel
weak channel code protection

preamble parity information

m n−m− k k

� Overall rate: R = k/n FIXED
� Channel code rate: Rc = k/(n−m)

50G. Liva, G. Durisi, M. Chiani, S. S. Ullah, and S. C. Liew, “Short Codes with Mismatched Channel State
Information: A Case Study,” in SPAWC, Jun. 2017
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Mismatched Decoding5152

� Suppose the channel estimate ĥ to be available by observing the preamble
� The decoder may treat ĥ as reliable and proceed by

x̂ = arg max
x∈C

p(y|x, ĥ)

= arg max
x∈C

n−m∏
i=1

p(yi|xi, ĥ)

with
p(y|x, ĥ) = 1

2πσ2 exp
[
− 1

2σ2 |y − ĥx|
2
]

51G. Kaplan and S. Shamai, “Information rates and error exponents of compound channels with application
to antipodal signaling in a fading environment,” AEU. Archiv für Elektronik und Übertragungstechnik,
1993

52N. Merhav, G. Kaplan, A. Lapidoth, and S. S. Shitz, “On information rates for mismatched decoders,”
IEEE Trans. Inf. Theory, 1994
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Mismatched Decoding

� Mismatched decoding metric

q(y, x; ĥ) = p(y|x, ĥ)

� Maximum metric decoding

x̂ = arg max
x∈C

q(y,x; ĥ)

= arg max
x∈C

n−m∏
i=1

q(yi, xi; ĥ)

� Maximum metric decoding = maximum likelihood decoding if ĥ = h
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Gallager’s Random Coding Bound
Mismatched Decoding Metric

Upper bound on PB(C?; ĥ) under the mismatched metric q(y, x; ĥ)

PB(C?; ĥ) ≤ E
[
PB(C; ĥ)

]
≤ PU (n−m, k; ĥ)

where PU (n−m, k; ĥ) = 2−(n−m)EG(Rc;ĥ)

with EG(Rc; ĥ)) = max
0≤ρ≤1

sup
s>0

[
E0(ρ, s; ĥ)− ρRc

]
and

E0(ρ, s; ĥ) = − log2 E

[(
E
[
q(Y, X̃; ĥ)s

∣∣Y ]
q(Y,X; ĥ)s

)ρ]
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Gallager’s Random Coding Bound
Mismatched Decoding Metric

If the distribution of Ĥ is available, then

P̄B(C?) = E
[
PB(C?; Ĥ)

]
can be upper bounded by averaging PU (n−m, k; ĥ) over the distribution of Ĥ

P̄B(C?) ≤ E
[
2−(n−m)EG(Rc;Ĥ)

]
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Dimensioning the Preamble
Example

� Transmit k = 256 bits in n = 512 channel uses
� Channel code: (512, 256) irregular repeat accumulate code
� Puncturing m parity bits to leave space for the preamble

� Maximum likelihood channel estimation, h as deterministic unknown
parameter

Eb
N0

= |h|2

2Rσ2

� Minimize the signal-to-noise ratio required to achieve PB = 10−3
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Dimensioning the Preamble
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